We study the Cauchy problem for an evolution equation of Schrödinger type. The Hamiltonian is the Weyl quantization of a real homogeneous quadratic form with a pseudodifferential perturbation of negative order from Shubin's class. We prove that the propagator is a Fourier integral operator of Shubin type of order zero. Using results for such operators and corresponding Lagrangian distributions, we study the propagator and the solution, and derive phase space estimates for them.
Shubin type Fourier integral operators and evolution equations / Cappiello, Marco; Schulz, René; Wahlberg, Patrik. - In: JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS. - ISSN 1662-9981. - 11:1(2020), pp. 119-139. [10.1007/s11868-019-00288-0]
Shubin type Fourier integral operators and evolution equations
Cappiello, Marco;Wahlberg, Patrik
2020
Abstract
We study the Cauchy problem for an evolution equation of Schrödinger type. The Hamiltonian is the Weyl quantization of a real homogeneous quadratic form with a pseudodifferential perturbation of negative order from Shubin's class. We prove that the propagator is a Fourier integral operator of Shubin type of order zero. Using results for such operators and corresponding Lagrangian distributions, we study the propagator and the solution, and derive phase space estimates for them.File | Dimensione | Formato | |
---|---|---|---|
shubinFIOevolutionOF.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
578.17 kB
Formato
Adobe PDF
|
578.17 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1805.10922.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
287.52 kB
Formato
Adobe PDF
|
287.52 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2961110