We study the Cauchy problem for an evolution equation of Schrödinger type. The Hamiltonian is the Weyl quantization of a real homogeneous quadratic form with a pseudodifferential perturbation of negative order from Shubin's class. We prove that the propagator is a Fourier integral operator of Shubin type of order zero. Using results for such operators and corresponding Lagrangian distributions, we study the propagator and the solution, and derive phase space estimates for them.
Shubin type Fourier integral operators and evolution equations / Cappiello, Marco; Schulz, René; Wahlberg, Patrik. - In: JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS. - ISSN 1662-9981. - 11:1(2020), pp. 119-139. [10.1007/s11868-019-00288-0]
Titolo: | Shubin type Fourier integral operators and evolution equations | |
Autori: | ||
Data di pubblicazione: | 2020 | |
Rivista: | ||
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s11868-019-00288-0 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
shubinFIOevolutionOF.pdf | 2a Post-print versione editoriale / Version of Record | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia | |
1805.10922.pdf | 2. Post-print / Author's Accepted Manuscript | PUBBLICO - Tutti i diritti riservati | Visibile a tuttiVisualizza/Apri |
http://hdl.handle.net/11583/2961110