Hierarchically porous synthetic bone grafts (scaffolds) are gaining attention in the clinical arena. Scaffolds should combine morphological (macro- and microporosity, pore interconnectivity), mechanical and biological (biocompatibility, degradation rate) properties to fit this specific use. Supercritical (sc-) foaming is a versatile scaffold processing technology. However, the selection of the optimum operating conditions to obtain a defined scaffold structure is hampered by the lack of a single characterization technique able to fully elucidate the porous features of the resulting scaffolds. In this work, the effect of soaking time (1, 3 and 5 h) on the preparation of poly(ε-caprolactone) (PCL, 50 kDa) scaffolds by sc-foaming was evaluated by a combined X-ray microtomography (μ-CT) and mercury intrusion porosimetry (MIP) 3D-morphological analysis. Mechanical tests and in silico modelling for cell penetration and water permeability of the scaffolds were also conducted. Results evidenced the relevance of μ-CT and MIP as a synergistic analytical duo to fully elucidate the morphology of the sc-foamed scaffolds and the soaking time effect.
New insights in the morphological characterization and modelling of poly(ε-caprolactone) bone scaffolds obtained by supercritical CO2 foaming / Rosales, Víctorsantos; Gallo, Marta; Jaeger, Philip; Alvarez-Lorenzo, Carmen; Gómez-Amoza, José; García-González, Carlos A.. - In: THE JOURNAL OF SUPERCRITICAL FLUIDS. - ISSN 0896-8446. - ELETTRONICO. - 166:(2020). [10.1016/j.supflu.2020.105012]
New insights in the morphological characterization and modelling of poly(ε-caprolactone) bone scaffolds obtained by supercritical CO2 foaming
Marta Gallo;
2020
Abstract
Hierarchically porous synthetic bone grafts (scaffolds) are gaining attention in the clinical arena. Scaffolds should combine morphological (macro- and microporosity, pore interconnectivity), mechanical and biological (biocompatibility, degradation rate) properties to fit this specific use. Supercritical (sc-) foaming is a versatile scaffold processing technology. However, the selection of the optimum operating conditions to obtain a defined scaffold structure is hampered by the lack of a single characterization technique able to fully elucidate the porous features of the resulting scaffolds. In this work, the effect of soaking time (1, 3 and 5 h) on the preparation of poly(ε-caprolactone) (PCL, 50 kDa) scaffolds by sc-foaming was evaluated by a combined X-ray microtomography (μ-CT) and mercury intrusion porosimetry (MIP) 3D-morphological analysis. Mechanical tests and in silico modelling for cell penetration and water permeability of the scaffolds were also conducted. Results evidenced the relevance of μ-CT and MIP as a synergistic analytical duo to fully elucidate the morphology of the sc-foamed scaffolds and the soaking time effect.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0896844620302631-main.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
2.9 MB
Formato
Adobe PDF
|
2.9 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2959827