Na-ion batteries are emerging as convenient energy-storage devices for large-scale applications. Enhanced energy density and cycling stability are key in the optimization of functional cathode materials such as P2-type layered transition metal oxides. High operating voltage can be achieved by enabling anionic reactions, but irreversibility of O2–/O2n–/O2 evolution still limits this chance, leading to extra capacity at first cycle that is not fully recovered. Here, we dissect this intriguing oxygen redox activity in Mn-deficient NaxNi0.25Mn0.68O2 from first-principles, by analyzing the formation of oxygen vacancies and dioxygen complexes at different stages of sodiation. We identify low-energy intermediates that release molecular O2 at high voltage, and we show how to improve the overall cathode stability by partial substitution of Ni with Fe. These new atomistic insights on O2 formation mechanism set solid scientific foundations for inhibition and control of this process toward the rational design of new anionic redox-active cathode materials.

Unveiling Oxygen Redox Activity in P2-Type NaxNi0.25Mn0.68O2 High-Energy Cathode for Na-Ion Batteries / Massaro, Arianna; Muñoz-García, Ana B.; Paolo Prosini, Pier; Gerbaldi, Claudio; Pavone, Michele. - In: ACS ENERGY LETTERS. - ISSN 2380-8195. - STAMPA. - 6:7(2021), pp. 2470-2480. [10.1021/acsenergylett.1c01020]

Unveiling Oxygen Redox Activity in P2-Type NaxNi0.25Mn0.68O2 High-Energy Cathode for Na-Ion Batteries

Claudio Gerbaldi;
2021

Abstract

Na-ion batteries are emerging as convenient energy-storage devices for large-scale applications. Enhanced energy density and cycling stability are key in the optimization of functional cathode materials such as P2-type layered transition metal oxides. High operating voltage can be achieved by enabling anionic reactions, but irreversibility of O2–/O2n–/O2 evolution still limits this chance, leading to extra capacity at first cycle that is not fully recovered. Here, we dissect this intriguing oxygen redox activity in Mn-deficient NaxNi0.25Mn0.68O2 from first-principles, by analyzing the formation of oxygen vacancies and dioxygen complexes at different stages of sodiation. We identify low-energy intermediates that release molecular O2 at high voltage, and we show how to improve the overall cathode stability by partial substitution of Ni with Fe. These new atomistic insights on O2 formation mechanism set solid scientific foundations for inhibition and control of this process toward the rational design of new anionic redox-active cathode materials.
File in questo prodotto:
File Dimensione Formato  
A. Massaro et al. - ACS Energy Lett. 6 (2021) 2470.pdf

accesso aperto

Descrizione: Articolo principale in versione editoriale in quanto Open Access
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 4.71 MB
Formato Adobe PDF
4.71 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2959721