An unmanned aerial vehicle (UAV) is exploited to characterize in situ the high-band antennas (HBAs) of the low-frequency array (LOFAR) CS302 station located in Exloo, The Netherlands. The size of an HBA array is about 30 m. The Fraunhofer distance (a few kilometers) is not reachable in the frequency band (120 to 240 MHz) within the flight regulation limits. Therefore, far-field patterns cannot be directly measured. The UAV, equipped with an radio frequency synthesizer and a dipole antenna, flies in the near-field region of the considered array. Measurement of three different frequencies (124, 150, and 180 MHz) is efficiently made during the same UAV flight. The near-field focusing method is exploited to validate the far-field pattern of the array under test within an angular range around the beam axis. Such a technique avoids both the time consuming λ∕2 sampling of the aperture field and the further application of computationally heavy near-field to far-field transformations. The array beam is well reconstructed in the main lobe and first sidelobes within a 2D scan plane sampled with a radial raster. A further postprocessing technique is proposed and validated on a subarray of HBAs. It suggests efficient ways for the future characterization of regular aperture arrays for SKA-MID Phase 2.
Measurement of the LOFAR-HBA beam patterns using an unmanned aerial vehicle in the near field / Virone, Giuseppe; Paonessa, Fabio; Ciorba, Lorenzo; Matteoli, Stefania; Bolli, Pietro; Wijnholds, Stefan J.; Addamo, Giuseppe. - In: JOURNAL OF ASTRONOMICAL TELESCOPES, INSTRUMENTS, AND SYSTEMS. - ISSN 2329-4124. - ELETTRONICO. - 8:1(2022). [10.1117/1.JATIS.8.1.011005]
Measurement of the LOFAR-HBA beam patterns using an unmanned aerial vehicle in the near field
Giuseppe Virone;Fabio Paonessa;Lorenzo Ciorba;Giuseppe Addamo
2022
Abstract
An unmanned aerial vehicle (UAV) is exploited to characterize in situ the high-band antennas (HBAs) of the low-frequency array (LOFAR) CS302 station located in Exloo, The Netherlands. The size of an HBA array is about 30 m. The Fraunhofer distance (a few kilometers) is not reachable in the frequency band (120 to 240 MHz) within the flight regulation limits. Therefore, far-field patterns cannot be directly measured. The UAV, equipped with an radio frequency synthesizer and a dipole antenna, flies in the near-field region of the considered array. Measurement of three different frequencies (124, 150, and 180 MHz) is efficiently made during the same UAV flight. The near-field focusing method is exploited to validate the far-field pattern of the array under test within an angular range around the beam axis. Such a technique avoids both the time consuming λ∕2 sampling of the aperture field and the further application of computationally heavy near-field to far-field transformations. The array beam is well reconstructed in the main lobe and first sidelobes within a 2D scan plane sampled with a radial raster. A further postprocessing technique is proposed and validated on a subarray of HBAs. It suggests efficient ways for the future characterization of regular aperture arrays for SKA-MID Phase 2.File | Dimensione | Formato | |
---|---|---|---|
virone - LOFAR jatis spie .pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
2.9 MB
Formato
Adobe PDF
|
2.9 MB | Adobe PDF | Visualizza/Apri |
paper_SPIE_v9.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Creative commons
Dimensione
1.59 MB
Formato
Adobe PDF
|
1.59 MB | Adobe PDF | Visualizza/Apri |
paper_SPIE_v5.pdf
non disponibili
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.2 MB
Formato
Adobe PDF
|
1.2 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2959498