This paper presents a new and efficient method to generate a dataset for brain stroke classification. Exploiting the Born approximation, it derives scattering parameters at antennas locations in a 3-D scenario through a linear integral operator. This technique allows to create a large amount of data in a short time, if compared with the full-wave simulations or measurements. Then, the support vector machine is used to create the classifier model, based on training set data with a supervised method and to classify the test set. The dataset is composed by 9 classes, differentiated for presence, typology and position of the stroke. The algorithm is able to classify the test set with a high accuracy.
Model-based data generation for support vector machine stroke classification / Mariano, Valeria; Tobon Vasquez, Jorge A.; Casu, Mario R.; Vipiana, Francesca. - ELETTRONICO. - (2021). (Intervento presentato al convegno 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI) tenutosi a Singapore, Singapore nel 4-10 Dec. 2021) [10.1109/APS/URSI47566.2021.9704125].
Model-based data generation for support vector machine stroke classification
Valeria Mariano;Jorge A. Tobon Vasquez;Mario R. Casu;Francesca Vipiana
2021
Abstract
This paper presents a new and efficient method to generate a dataset for brain stroke classification. Exploiting the Born approximation, it derives scattering parameters at antennas locations in a 3-D scenario through a linear integral operator. This technique allows to create a large amount of data in a short time, if compared with the full-wave simulations or measurements. Then, the support vector machine is used to create the classifier model, based on training set data with a supervised method and to classify the test set. The dataset is composed by 9 classes, differentiated for presence, typology and position of the stroke. The algorithm is able to classify the test set with a high accuracy.File | Dimensione | Formato | |
---|---|---|---|
VALERIA_APS2021.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
186.03 kB
Formato
Adobe PDF
|
186.03 kB | Adobe PDF | Visualizza/Apri |
Da IEEE xplore.pdf
non disponibili
Descrizione: Articolo principale
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
240.07 kB
Formato
Adobe PDF
|
240.07 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2959329