This paper presents a new and efficient method to generate a dataset for brain stroke classification. Exploiting the Born approximation, it derives scattering parameters at antennas locations in a 3-D scenario through a linear integral operator. This technique allows to create a large amount of data in a short time, if compared with the full-wave simulations or measurements. Then, the support vector machine is used to create the classifier model, based on training set data with a supervised method and to classify the test set. The dataset is composed by 9 classes, differentiated for presence, typology and position of the stroke. The algorithm is able to classify the test set with a high accuracy.

Model-based data generation for support vector machine stroke classification / Mariano, Valeria; Tobon Vasquez, Jorge A.; Casu, Mario R.; Vipiana, Francesca. - ELETTRONICO. - (2021). (Intervento presentato al convegno 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI) tenutosi a Singapore, Singapore nel 4-10 Dec. 2021) [10.1109/APS/URSI47566.2021.9704125].

Model-based data generation for support vector machine stroke classification

Valeria Mariano;Jorge A. Tobon Vasquez;Mario R. Casu;Francesca Vipiana
2021

Abstract

This paper presents a new and efficient method to generate a dataset for brain stroke classification. Exploiting the Born approximation, it derives scattering parameters at antennas locations in a 3-D scenario through a linear integral operator. This technique allows to create a large amount of data in a short time, if compared with the full-wave simulations or measurements. Then, the support vector machine is used to create the classifier model, based on training set data with a supervised method and to classify the test set. The dataset is composed by 9 classes, differentiated for presence, typology and position of the stroke. The algorithm is able to classify the test set with a high accuracy.
File in questo prodotto:
File Dimensione Formato  
VALERIA_APS2021.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 186.03 kB
Formato Adobe PDF
186.03 kB Adobe PDF Visualizza/Apri
Da IEEE xplore.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 240.07 kB
Formato Adobe PDF
240.07 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2959329