In this work, we present a novel and general mathematical technique to get Generalized Wiener-Hopf Equations (GWHEs) in angular regions filled by an arbitrary linear medium and with arbitrary boundary conditions [1]-[2]. We first extend the transverse equation theory developed in [3] by Bresler and Marcuvitz for stratified media. We develop the theory for angular regions in electromagnetics using oblique Cartesian coordinates, starting from Maxwell's equations. It yields a matrix differential problem of first order (1) whose unknowns are the field component ψt tangent to the faces of the angular regions (i.e. the field components continuous on the boundaries).

Modified Bresler-Marcuvitz Transverse Equation Theory for Wedge Shaped Regions to derive Generalized Wiener-Hopf Equations / Daniele, V.; Lombardi, G.. - ELETTRONICO. - 1:(2021), pp. 413-413. (Intervento presentato al convegno 22nd International Conference on Electromagnetics in Advanced Applications, ICEAA 2021 tenutosi a Honolulu, HI, USA nel 9-13 Aug. 2021) [10.1109/ICEAA52647.2021.9539581].

Modified Bresler-Marcuvitz Transverse Equation Theory for Wedge Shaped Regions to derive Generalized Wiener-Hopf Equations

Daniele V.;Lombardi G.
2021

Abstract

In this work, we present a novel and general mathematical technique to get Generalized Wiener-Hopf Equations (GWHEs) in angular regions filled by an arbitrary linear medium and with arbitrary boundary conditions [1]-[2]. We first extend the transverse equation theory developed in [3] by Bresler and Marcuvitz for stratified media. We develop the theory for angular regions in electromagnetics using oblique Cartesian coordinates, starting from Maxwell's equations. It yields a matrix differential problem of first order (1) whose unknowns are the field component ψt tangent to the faces of the angular regions (i.e. the field components continuous on the boundaries).
2021
978-1-6654-1386-2
File in questo prodotto:
File Dimensione Formato  
2021_ICEAA.pdf

non disponibili

Descrizione: Editor version
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.79 MB
Formato Adobe PDF
1.79 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
992_Paper_ICEAA_APWC_2021_BM_new.pdf

accesso aperto

Descrizione: Author version
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 229.99 kB
Formato Adobe PDF
229.99 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2958979