In this work, we present a novel and general mathematical technique to get Generalized Wiener-Hopf Equations (GWHEs) in angular regions filled by an arbitrary linear medium and with arbitrary boundary conditions [1]-[2]. We first extend the transverse equation theory developed in [3] by Bresler and Marcuvitz for stratified media. We develop the theory for angular regions in electromagnetics using oblique Cartesian coordinates, starting from Maxwell's equations. It yields a matrix differential problem of first order (1) whose unknowns are the field component ψt tangent to the faces of the angular regions (i.e. the field components continuous on the boundaries).
Modified Bresler-Marcuvitz Transverse Equation Theory for Wedge Shaped Regions to derive Generalized Wiener-Hopf Equations / Daniele, V.; Lombardi, G.. - ELETTRONICO. - 1:(2021), pp. 413-413. (Intervento presentato al convegno 22nd International Conference on Electromagnetics in Advanced Applications, ICEAA 2021 tenutosi a Honolulu, HI, USA nel 9-13 Aug. 2021) [10.1109/ICEAA52647.2021.9539581].
Modified Bresler-Marcuvitz Transverse Equation Theory for Wedge Shaped Regions to derive Generalized Wiener-Hopf Equations
Daniele V.;Lombardi G.
2021
Abstract
In this work, we present a novel and general mathematical technique to get Generalized Wiener-Hopf Equations (GWHEs) in angular regions filled by an arbitrary linear medium and with arbitrary boundary conditions [1]-[2]. We first extend the transverse equation theory developed in [3] by Bresler and Marcuvitz for stratified media. We develop the theory for angular regions in electromagnetics using oblique Cartesian coordinates, starting from Maxwell's equations. It yields a matrix differential problem of first order (1) whose unknowns are the field component ψt tangent to the faces of the angular regions (i.e. the field components continuous on the boundaries).File | Dimensione | Formato | |
---|---|---|---|
2021_ICEAA.pdf
non disponibili
Descrizione: Editor version
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.79 MB
Formato
Adobe PDF
|
1.79 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
992_Paper_ICEAA_APWC_2021_BM_new.pdf
accesso aperto
Descrizione: Author version
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
229.99 kB
Formato
Adobe PDF
|
229.99 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2958979