We prove that the border rank of the Kronecker square of the little Coppersmith–Winograd tensor Tcw,q is the square of its border rank for q> 2 and that the border rank of its Kronecker cube is the cube of its border rank for q> 4. This answers questions raised implicitly by Coppersmith & Winograd (1990, §11)and explicitly by Bläser (2013, Problem 9.8) and rules out the possibility of proving new upper bounds on the exponent of matrix multiplication using the square or cube of a little Coppersmith–Winograd tensor in this range. In the positive direction, we enlarge the list of explicit tensors potentially useful for Strassen's laser method, introducing a skew-symmetric version of the Coppersmith–Winograd tensor, Tskewcw,q. For q= 2 , the Kronecker square of this tensor coincides with the 3 × 3 determinant polynomial, det 3∈ C9⊗ C9⊗ C9, regarded as a tensor. We show that this tensor could potentially be used to show that the exponent of matrix multiplication is two. We determine new upper bounds for the (Waring) rank and the (Waring) border rank of det 3, exhibiting a strict submultiplicative behaviour for Tskewcw,2 which is promising for the laser method. We establish general results regarding border ranks of Kronecker powers of tensors, and make a detailed study of Kronecker squares of tensors in C3⊗ C3⊗ C3.

Rank and border rank of Kronecker powers of tensors and Strassen's laser method / Conner, A.; Gesmundo, F.; Landsberg, J. M.; Ventura, E.. - In: COMPUTATIONAL COMPLEXITY. - ISSN 1016-3328. - 31:1(2022). [10.1007/s00037-021-00217-y]

Rank and border rank of Kronecker powers of tensors and Strassen's laser method

Ventura E.
2022

Abstract

We prove that the border rank of the Kronecker square of the little Coppersmith–Winograd tensor Tcw,q is the square of its border rank for q> 2 and that the border rank of its Kronecker cube is the cube of its border rank for q> 4. This answers questions raised implicitly by Coppersmith & Winograd (1990, §11)and explicitly by Bläser (2013, Problem 9.8) and rules out the possibility of proving new upper bounds on the exponent of matrix multiplication using the square or cube of a little Coppersmith–Winograd tensor in this range. In the positive direction, we enlarge the list of explicit tensors potentially useful for Strassen's laser method, introducing a skew-symmetric version of the Coppersmith–Winograd tensor, Tskewcw,q. For q= 2 , the Kronecker square of this tensor coincides with the 3 × 3 determinant polynomial, det 3∈ C9⊗ C9⊗ C9, regarded as a tensor. We show that this tensor could potentially be used to show that the exponent of matrix multiplication is two. We determine new upper bounds for the (Waring) rank and the (Waring) border rank of det 3, exhibiting a strict submultiplicative behaviour for Tskewcw,2 which is promising for the laser method. We establish general results regarding border ranks of Kronecker powers of tensors, and make a detailed study of Kronecker squares of tensors in C3⊗ C3⊗ C3.
File in questo prodotto:
File Dimensione Formato  
Rank and border rank of Kronecker powers of tensors and Strassen's laser method.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 583.64 kB
Formato Adobe PDF
583.64 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2957994