In this paper we deal with a particular class of rank two vector bundles (emph{instanton} bundles) on the Fano threefold of index one $F:=mathbb{F}_1 imes mathbb{P}^1$. We show that every instanton bundle on $F$ can be described as the cohomology of a monad whose terms are free sheaves. Furthermore we prove the existence of instanton bundles for any admissible second Chern class and we construct a nice component of the moduli space where they sit. Finally we show that minimal instanton bundles (i.e. with the least possible degree of the second Chern class) are aCM and we describe their moduli space.
Instanton bundles on P1×F1 / Antonelli, Vincenzo; Casnati, Gianfranco; Genc, Ozhan. - In: COMMUNICATIONS IN ALGEBRA. - ISSN 0092-7872. - STAMPA. - 49:8(2021), pp. 3594-3613. [10.1080/00927872.2021.1901291]
Instanton bundles on P1×F1
Vincenzo Antonelli;Gianfranco Casnati;Ozhan Genc
2021
Abstract
In this paper we deal with a particular class of rank two vector bundles (emph{instanton} bundles) on the Fano threefold of index one $F:=mathbb{F}_1 imes mathbb{P}^1$. We show that every instanton bundle on $F$ can be described as the cohomology of a monad whose terms are free sheaves. Furthermore we prove the existence of instanton bundles for any admissible second Chern class and we construct a nice component of the moduli space where they sit. Finally we show that minimal instanton bundles (i.e. with the least possible degree of the second Chern class) are aCM and we describe their moduli space.File | Dimensione | Formato | |
---|---|---|---|
Instanton bundles on P1 F1.pdf
accesso riservato
Descrizione: Articolo principale
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
2.1 MB
Formato
Adobe PDF
|
2.1 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2957777