The shift of Convolutional Neural Networks (ConvNets) into low-power devices with limited compute and memory resources calls for cross-layer strategies spanning from hardware to software optimization. This work answers to this need, presenting a collection of tools for efficient deployment of ConvNets on the edge.

Optimization Tools for ConvNets on the Edge / Peluso, V.; MacIi, E.; Calimera, A.. - ELETTRONICO. - (2020), pp. 204-205. ((Intervento presentato al convegno 28th IFIP/IEEE International Conference on Very Large Scale Integration, VLSI-SOC 2020 tenutosi a Salt Lake City, UT, USA nel 2020 [10.1109/VLSI-SOC46417.2020.9344075].

Optimization Tools for ConvNets on the Edge

Peluso V.;MacIi E.;Calimera A.
2020

Abstract

The shift of Convolutional Neural Networks (ConvNets) into low-power devices with limited compute and memory resources calls for cross-layer strategies spanning from hardware to software optimization. This work answers to this need, presenting a collection of tools for efficient deployment of ConvNets on the edge.
978-1-7281-5409-1
File in questo prodotto:
File Dimensione Formato  
Optimization_Tools_for_ConvNets_on_the_Edge.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 79.09 kB
Formato Adobe PDF
79.09 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11583/2957350