The shift of Convolutional Neural Networks (ConvNets) into low-power devices with limited compute and memory resources calls for cross-layer strategies spanning from hardware to software optimization. This work answers to this need, presenting a collection of tools for efficient deployment of ConvNets on the edge.
Optimization Tools for ConvNets on the Edge / Peluso, V.; Macii, E.; Calimera, A.. - ELETTRONICO. - (2020), pp. 204-205. (Intervento presentato al convegno 28th IFIP/IEEE International Conference on Very Large Scale Integration, VLSI-SOC 2020 tenutosi a Salt Lake City, UT, USA nel 2020) [10.1109/VLSI-SOC46417.2020.9344075].
Optimization Tools for ConvNets on the Edge
Peluso V.;MacIi E.;Calimera A.
2020
Abstract
The shift of Convolutional Neural Networks (ConvNets) into low-power devices with limited compute and memory resources calls for cross-layer strategies spanning from hardware to software optimization. This work answers to this need, presenting a collection of tools for efficient deployment of ConvNets on the edge.File | Dimensione | Formato | |
---|---|---|---|
Optimization_Tools_for_ConvNets_on_the_Edge.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
79.09 kB
Formato
Adobe PDF
|
79.09 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2957350