In this paper we analyse the convergence properties of two-level, W-cycle and V-cycle agglomeration-based geometric multigrid schemes for the numerical solution of the linear system of equations stemming from the lowest order C0 -conforming Virtual Element discretization of two-dimensional second-order elliptic partial differential equations. The sequence of agglomerated tessellations are nested, but the corresponding multilevel virtual discrete spaces are generally non-nested thus resulting into non-nested multigrid algorithms. We prove the uniform convergence of the two-level method with respect to the mesh size and the uniform convergence of the W-cycle and the V-cycle multigrid algorithms with respect to the mesh size and the number of levels. Numerical experiments confirm the theoretical findings.
Agglomeration-based geometric multigrid schemes for the Virtual Element Method / Antonietti, Paola Francesca; Berrone, Stefano; Busetto, Martina; Verani, Marco. - In: SIAM JOURNAL ON NUMERICAL ANALYSIS. - ISSN 1095-7170. - ELETTRONICO. - 61:1(2023), pp. 223-249. [10.1137/21M1466864]
Agglomeration-based geometric multigrid schemes for the Virtual Element Method
Berrone, Stefano;Busetto, Martina;
2023
Abstract
In this paper we analyse the convergence properties of two-level, W-cycle and V-cycle agglomeration-based geometric multigrid schemes for the numerical solution of the linear system of equations stemming from the lowest order C0 -conforming Virtual Element discretization of two-dimensional second-order elliptic partial differential equations. The sequence of agglomerated tessellations are nested, but the corresponding multilevel virtual discrete spaces are generally non-nested thus resulting into non-nested multigrid algorithms. We prove the uniform convergence of the two-level method with respect to the mesh size and the uniform convergence of the W-cycle and the V-cycle multigrid algorithms with respect to the mesh size and the number of levels. Numerical experiments confirm the theoretical findings.File | Dimensione | Formato | |
---|---|---|---|
IRIS.pdf
non disponibili
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.56 MB
Formato
Adobe PDF
|
1.56 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Agglomeration-Based Geometric Multigrid Schemes for the Virtual Element Method _ SIAM Journal on Numerical Analysis _ Vol. 61, No. 1 _ Society for Industrial and Applied Mathematics.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
2.26 MB
Formato
Adobe PDF
|
2.26 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2957287