This study proposed an evaluation of enrichment processes of obsolete Printed Circuit Boards (PCBs), by means of gravity and electrostatic separation, aiming at the recovery of metals. PCBs are the most important component in electronic devices, having high concentrations of metals and offering a secondary source of raw materials. Its recycling promotes the reduction in the environmental impacts associated with its production, use, and disposal. The recovery method studied started with the dismantling of the PCB, followed by a comminution and granulometric classification. Subsequent magnetic, gravity, and electrostatic separations were performed. After the separations, a macroscopic visual evaluation and chemical analysis were carried out, determining the metal content in the concentrate products. The results obtained from gravity separation showed a product with metallic concentrations of 89% and 76% for particle sizes of 0.3–0.6 mm and 0.6–1.18 mm, respectively. In electrostatic separation, the product obtained was 88% for the lower particle size (<0.3 mm) and 62% for particles sizes >1.18 mm.
Gravity and Electrostatic Separation for Recovering Metals from Obsolete Printed Circuit Board / Bellopede, Rossana; Tori, Alice; Zanetti, Giovanna; Marini, Paola. - In: MATERIALS. - ISSN 1996-1944. - ELETTRONICO. - 15:5(2022), pp. 1-11. [10.3390/ma15051874]
Gravity and Electrostatic Separation for Recovering Metals from Obsolete Printed Circuit Board
Rossana Bellopede;Giovanna Zanetti;Paola Marini
2022
Abstract
This study proposed an evaluation of enrichment processes of obsolete Printed Circuit Boards (PCBs), by means of gravity and electrostatic separation, aiming at the recovery of metals. PCBs are the most important component in electronic devices, having high concentrations of metals and offering a secondary source of raw materials. Its recycling promotes the reduction in the environmental impacts associated with its production, use, and disposal. The recovery method studied started with the dismantling of the PCB, followed by a comminution and granulometric classification. Subsequent magnetic, gravity, and electrostatic separations were performed. After the separations, a macroscopic visual evaluation and chemical analysis were carried out, determining the metal content in the concentrate products. The results obtained from gravity separation showed a product with metallic concentrations of 89% and 76% for particle sizes of 0.3–0.6 mm and 0.6–1.18 mm, respectively. In electrostatic separation, the product obtained was 88% for the lower particle size (<0.3 mm) and 62% for particles sizes >1.18 mm.File | Dimensione | Formato | |
---|---|---|---|
materials-15-01874-v2 .pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
3.86 MB
Formato
Adobe PDF
|
3.86 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2957253