We consider trees with root at infinity endowed with flow measures, which are nondoubling measures of at least exponential growth and which do not satisfy the isoperimetric inequality. In this setting, we develop a Calderón–Zygmund theory and we define BMO and Hardy spaces, proving a number of desired results extending the corresponding theory as known in more classical settings.
Analysis on Trees with Nondoubling Flow Measures / Levi, M.; Santagati, F.; Tabacco, A.; Vallarino, M.. - In: POTENTIAL ANALYSIS. - ISSN 0926-2601. - 58:(2023), pp. 731-759. [10.1007/s11118-021-09957-6]
Analysis on Trees with Nondoubling Flow Measures
Santagati F.;Tabacco A.;Vallarino M.
2023
Abstract
We consider trees with root at infinity endowed with flow measures, which are nondoubling measures of at least exponential growth and which do not satisfy the isoperimetric inequality. In this setting, we develop a Calderón–Zygmund theory and we define BMO and Hardy spaces, proving a number of desired results extending the corresponding theory as known in more classical settings.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
s11118-021-09957-6.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
629.21 kB
Formato
Adobe PDF
|
629.21 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/11583/2956467