We consider trees with root at infinity endowed with flow measures, which are nondoubling measures of at least exponential growth and which do not satisfy the isoperimetric inequality. In this setting, we develop a Calderón–Zygmund theory and we define BMO and Hardy spaces, proving a number of desired results extending the corresponding theory as known in more classical settings.

Analysis on Trees with Nondoubling Flow Measures / Levi, M.; Santagati, F.; Tabacco, A.; Vallarino, M.. - In: POTENTIAL ANALYSIS. - ISSN 0926-2601. - 58:(2023), pp. 731-759. [10.1007/s11118-021-09957-6]

Analysis on Trees with Nondoubling Flow Measures

Santagati F.;Tabacco A.;Vallarino M.
2023

Abstract

We consider trees with root at infinity endowed with flow measures, which are nondoubling measures of at least exponential growth and which do not satisfy the isoperimetric inequality. In this setting, we develop a Calderón–Zygmund theory and we define BMO and Hardy spaces, proving a number of desired results extending the corresponding theory as known in more classical settings.
File in questo prodotto:
File Dimensione Formato  
s11118-021-09957-6.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 629.21 kB
Formato Adobe PDF
629.21 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2956467