We consider a homogeneous tree endowed with a nondoubling flow measure μ of exponential growth and a probabilistic Laplacian L self-adjoint with respect to μ. We prove that the maximal characterization in terms of the heat and the Poisson semigroup of L and the Riesz transform characterization of the atomic Hardy space introduced in a previous work fail.
Hardy spaces on homogeneous trees with flow measures / Santagati, F.. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - 510:2(2022), p. 126015. [10.1016/j.jmaa.2022.126015]
Hardy spaces on homogeneous trees with flow measures
Santagati F.
2022
Abstract
We consider a homogeneous tree endowed with a nondoubling flow measure μ of exponential growth and a probabilistic Laplacian L self-adjoint with respect to μ. We prove that the maximal characterization in terms of the heat and the Poisson semigroup of L and the Riesz transform characterization of the atomic Hardy space introduced in a previous work fail.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Hardy spaces on homogeneous trees with flow measures.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
412.25 kB
Formato
Adobe PDF
|
412.25 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
JMAA.pdf
Open Access dal 18/01/2024
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Creative commons
Dimensione
434.81 kB
Formato
Adobe PDF
|
434.81 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/11583/2956465