We consider a homogeneous tree endowed with a nondoubling flow measure μ of exponential growth and a probabilistic Laplacian L self-adjoint with respect to μ. We prove that the maximal characterization in terms of the heat and the Poisson semigroup of L and the Riesz transform characterization of the atomic Hardy space introduced in a previous work fail.

Hardy spaces on homogeneous trees with flow measures / Santagati, F.. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - 510:2(2022), p. 126015. [10.1016/j.jmaa.2022.126015]

Hardy spaces on homogeneous trees with flow measures

Santagati F.
2022

Abstract

We consider a homogeneous tree endowed with a nondoubling flow measure μ of exponential growth and a probabilistic Laplacian L self-adjoint with respect to μ. We prove that the maximal characterization in terms of the heat and the Poisson semigroup of L and the Riesz transform characterization of the atomic Hardy space introduced in a previous work fail.
File in questo prodotto:
File Dimensione Formato  
Hardy spaces on homogeneous trees with flow measures.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 412.25 kB
Formato Adobe PDF
412.25 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
JMAA.pdf

Open Access dal 18/01/2024

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 434.81 kB
Formato Adobe PDF
434.81 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2956465