In this paper we estimate the Sobolev embedding constant on general noncompact Lie groups, for sub-Riemannian inhomogeneous Sobolev spaces endowed with a left invariant measure. The bound that we obtain, up to a constant depending only on the group and its sub-Riemannian structure, reduces to the best known bound for the classical inhomogeneous Sobolev embedding constant on Rd. As an application, we prove local and global Moser–Trudinger inequalities.
The Sobolev embedding constant on Lie groups / Bruno, T.; Peloso, M. M.; Vallarino, M.. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - STAMPA. - 216:(2022). [10.1016/j.na.2021.112707]
The Sobolev embedding constant on Lie groups
Vallarino M.
2022
Abstract
In this paper we estimate the Sobolev embedding constant on general noncompact Lie groups, for sub-Riemannian inhomogeneous Sobolev spaces endowed with a left invariant measure. The bound that we obtain, up to a constant depending only on the group and its sub-Riemannian structure, reduces to the best known bound for the classical inhomogeneous Sobolev embedding constant on Rd. As an application, we prove local and global Moser–Trudinger inequalities.File | Dimensione | Formato | |
---|---|---|---|
BPV-2022-NonLinAn.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
761.43 kB
Formato
Adobe PDF
|
761.43 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Revised.pdf
Open Access dal 07/12/2023
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Creative commons
Dimensione
342.03 kB
Formato
Adobe PDF
|
342.03 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2955958