In this paper we estimate the Sobolev embedding constant on general noncompact Lie groups, for sub-Riemannian inhomogeneous Sobolev spaces endowed with a left invariant measure. The bound that we obtain, up to a constant depending only on the group and its sub-Riemannian structure, reduces to the best known bound for the classical inhomogeneous Sobolev embedding constant on Rd. As an application, we prove local and global Moser–Trudinger inequalities.

The Sobolev embedding constant on Lie groups / Bruno, T.; Peloso, M. M.; Vallarino, M.. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - STAMPA. - 216:(2022). [10.1016/j.na.2021.112707]

The Sobolev embedding constant on Lie groups

Vallarino M.
2022

Abstract

In this paper we estimate the Sobolev embedding constant on general noncompact Lie groups, for sub-Riemannian inhomogeneous Sobolev spaces endowed with a left invariant measure. The bound that we obtain, up to a constant depending only on the group and its sub-Riemannian structure, reduces to the best known bound for the classical inhomogeneous Sobolev embedding constant on Rd. As an application, we prove local and global Moser–Trudinger inequalities.
File in questo prodotto:
File Dimensione Formato  
BPV-2022-NonLinAn.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 761.43 kB
Formato Adobe PDF
761.43 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Revised.pdf

Open Access dal 07/12/2023

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 342.03 kB
Formato Adobe PDF
342.03 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2955958