Massive MIMO (mMIMO) is a key technology for improving propagation conditions and extending geographical coverage of wireless communications. We here address a mMIMO full-duplex relay network for machine-type-communications where channel state information availability at the transmitter is impractical. In this scenario, we argue that high end-to-end data rates can be achieved even if no precoding is performed at the transmitting nodes. We first formulate an optimization problem aiming at maximizing the achievable rate, considering the source transmit power to depend on the transmit power distribution at the relay node. We then solve this problem by letting the number of antennas grow large, and derive closed-form expressions for the transmit power at the source and relay, as well as for the system data rate. Our results, show that the rate obtained when no precoding is implemented at the relay, or at any of the transmitters, closely matches that of SVD precoding under the optimum receiver, and still achieves very high values in the case of the ZF and the MMSE receiver.

Performance of mMIMO FD Relay Networks with Limited Relay State Knowledge / Nordio, A.; Chiasserini, C. F.. - In: IEEE WIRELESS COMMUNICATIONS LETTERS. - ISSN 2162-2337. - STAMPA. - 11:5(2022), pp. 1032-1036. [10.1109/LWC.2022.3153798]

Performance of mMIMO FD Relay Networks with Limited Relay State Knowledge

Chiasserini, C. F.
2022

Abstract

Massive MIMO (mMIMO) is a key technology for improving propagation conditions and extending geographical coverage of wireless communications. We here address a mMIMO full-duplex relay network for machine-type-communications where channel state information availability at the transmitter is impractical. In this scenario, we argue that high end-to-end data rates can be achieved even if no precoding is performed at the transmitting nodes. We first formulate an optimization problem aiming at maximizing the achievable rate, considering the source transmit power to depend on the transmit power distribution at the relay node. We then solve this problem by letting the number of antennas grow large, and derive closed-form expressions for the transmit power at the source and relay, as well as for the system data rate. Our results, show that the rate obtained when no precoding is implemented at the relay, or at any of the transmitters, closely matches that of SVD precoding under the optimum receiver, and still achieves very high values in the case of the ZF and the MMSE receiver.
File in questo prodotto:
File Dimensione Formato  
R2_MIMO_NP_v1_2col.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 363.13 kB
Formato Adobe PDF
363.13 kB Adobe PDF Visualizza/Apri
Performance_of_mMIMO_FD_Relay_Networks_With_Limited_Relay_State_Knowledge.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 525.2 kB
Formato Adobe PDF
525.2 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2955885