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Performance of mMIMO FD Relay Networks with
Limited Relay State Knowledge

Alessandro Nordio, Member, IEEE, Carla Fabiana Chiasserini, Fellow, IEEE

Abstract—Massive MIMO (mMIMO) is a key technology for
improving propagation conditions and extending geographical
coverage of wireless communications. We here address a mMIMO
full-duplex relay network for machine-type-communications
where channel state information availability at the transmitter
is impractical. In this scenario, we argue that high end-to-end
data rates can be achieved even if no precoding is performed
at the transmitting nodes. We first formulate an optimization
problem aiming at maximizing the achievable rate, considering
the source transmit power to depend on the transmit power
distribution at the relay node. We then solve this problem by
letting the number of antennas grow large, and derive closed-
form expressions for the transmit power at the source and relay,
as well as for the system data rate. Our results, show that the
rate obtained when no precoding is implemented at the relay, or
at any of the transmitters, closely matches that of SVD precoding
under the optimum receiver, and still achieves very high values
in the case of the ZF and the MMSE receiver.

Index Terms—mMIMO, Relay networks, Achievable rate

I. INTRODUCTION

Massive multiple-input-multiple-output (mMIMO) commu-
nication is one of the key technologies in 5G/6G, as, thanks to
the large number of spatial degrees of freedom (DoF), it makes
channel conditions appear almost constant over time and
allows for better propagation. In spite of such benefits, which
can greatly improve the capacity and geographical coverage of
communication systems, mMIMO connectivity for machine-
type-communications (MTC) is still in infancy [1], [2]. Indeed,
a high number of spatial DoFs can be achieved only through an
accurate estimation of channel state information (CSI), which,
due to the large number of antennas used for mMIMO, can
be very time and bandwidth consuming. Additionally, MTC
scenarios include numerous devices, but only few are active at
a given point in time, and detecting (and estimating the channel
for) the communication links to be used is highly challenging.
These factors combined together make availability of CSI at
the transmitter in mMIMO MTC hard to achieve.

Prior work on mMIMO in MTC single-hop networks can
be found in, e.g., [3], which presents a channel approximation
model and a channel estimation algorithm. In an amplify-and-
forward relay network, [4], [5] determine, respectively, the
power allocation and the pilot length maximizing the system
performance. mMIMO relay networks are instead addressed
in [6], where two transmission protocols for single-antenna
users are studied, and [7] where however all transmitters have
perfect CSI knowledge and, hence, apply precoding.

In this paper, we take a different perspective from previous
work and argue that, when CSI knowledge at the transmitter
is lacking and a sufficiently accurate estimation thereof is im-
practical, it may be more beneficial not to perform precoding.

Specifically, unlike prior art, we tackle a mMIMO full-duplex
(FD) relay network working in decode-and-forward (DF) mode
and where the destination is an MTC device, and optimize
the transmit power at the source (e.g., a cellular base station)
and relay, so as to maximize the achievable rate in absence
of precoding. We consider both the case where precoding
is implemented at neither the source nor the relay, which
reflects the case where the relay is a capability-constrained
device, and that where only the source performs precoding,
which corresponds to the case where the relay is able to send
appropriate feedback to the source. Further, we consider that
different receivers, namely, optimal, zero-forcing (ZF), and
minimum mean square error (MMSE), can be used. In these
scenarios, we provide the following main contributions:

(i) We argue that no-precoding at the transmitters in
mMIMO FD relay networks can lead to excellent performance,
when the values of transmit power are optimally selected. To
support our claim, we formulate the problem of maximizing
the achievable rate in such networks, accounting for all main
system constraints and making the source transmit power
depend on the transmit power distribution at the relay;

(ii) In light of the problem complexity, we first optimize
the source transmit power to maximize the rate on the source-
destination link, given the relay transmit power distribution;

(iii) We then consider that the number of antennas at the
network nodes grows large while their ratios remain constant,
and present an asymptotic analysis of the system rate that
provides a closed-form expression for the transmitters’ power
as well as for the system achievable rate;

(iv) Through numerical analysis, we show the excellent
performance that can be obtained when compared to the case
where SDV precoding is implemented.
We remark that, to our knowledge, we are the first to provide
such analysis and to show the performance of different ap-
proaches for rate maximization in mMIMO FD relay networks
with no precoding.

The rest of the paper is organized as follows. Sec. II
introduces our system model and achievable rate maximization
in an mMIMO FD relay network. Sec. III discusses how to
determine the source transmit power, while our asymptotic
analysis and closed-form expressions for the transmit power
and data rate are derived in Sec. IV. Finally, Sec. V compares
the performance of our scheme against the case where SVD
precoding is implemented, and Sec. VI concludes the paper.

II. ACHIEVABLE RATE MAXIMIZATION IN MMIMO
FULL-DUPLEX RELAY NETWORKS

In this section, we first describe the system model con-
sidering a finite number of antennas at the network nodes.
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Then, given such a scenario, we formulate the problem of
maximizing the system achievable rate.

A. System Model

We consider a 2-hop wireless relay network (although the
results apply to 1-hope networks as well), as depicted in
Fig. 1, where data source S, i.e., a cellular base station, cannot
directly communicate with destination D, i.e., a MTC device.
Connectivity between S and D is permitted by relay node R,
which can operate in FD mode.R decodes the message sent by
S and re-encodes it on the R−D link (DF); in the following,
variables with subscript i=1, 2 refer to the first (S−R) and
the second (R−D) link, respectively.

RS

n1

H1 H2

n2m1 m2

D

Fig. 1. Full-duplex relay network scenario.

We also assume that all network nodes are equipped with
multiple antennas, namely, S has n1 transmit antennas, R has
n2 and m1 transmit and receive antennas, respectively, while
D has m2 antennas. Receivers of both links have perfect CSI;
on the contrary, CSI is not available at the transmitters, e.g.,
the relay has knowledge of the S−R channel, but it does not
have knowledge of the R−D channel.

Next, consider a period of time where both channels are
static and where both source and relay transmit with power
p1 ∈ [0, pmax

1 ] and p2 ∈ [0, pmax
2 ], respectively. Then the signal

at the receiver of the i-th link can be described by the vector

yi =
√
piαiHixi + ηi (1)

where xi is the vector of transmitted random symbols. We
assume xi to be a Gaussian complex multivariate random
variable with zero mean and covariance E[xix

H
i ] = 1

ni
I. The

coefficient αi is the path loss and the mi × ni matrix Hi

contains the channel coefficients of the i-th link. The vector ηi
accounts for the thermal noise, for any possible interference
affecting the reception, and, in the case of the S − R link,
also for the self-interference. It is modeled as a complex
Gaussian multivariate random variable with independent and
identically distributed (iid) entries, zero mean and covariance
E[ηiη

H
i ] = NiI. This is in accordance with prior work [7]–[9]

that assumes the self-interference power to be proportional to
the relay average transmit power p2, through the coefficient β,
which accounts for analog and digital attenuation techniques
implemented at the relay. Thus, we write N1 = I1 + βp2
where I1 represents the contribution of the thermal noise.
Since the R−D link does not suffer from self-interference,
we write N2 = I2. Note that the term η1 on the S − R
link is independent of x1, as it depends upon the information
previously sent by S, and currently relayed by R, but not on
the information that S is currently transmitting.

B. Receiver models and achievable link rates

To decode the transmitted data, the receiver has several
options. The optimum receiver can jointly decode all symbols

in xi, thus achieving rate

ρi = log2

∣∣∣I + pisiH̃
H
i H̃i

∣∣∣ =

ni∑
j=1

log2 (1 + pisiλi,j) (2)

where H̃i = Hi√
mi

, si = αimi

Nini
, and λi,j is the j-th eigen-

value of H̃H
i H̃i. As an alternative, simpler suboptimal linear

receivers can be used. Such receivers first multiply yi by an
ni ×mi filter, Bi, forming the vectors

zi = Biyi, i = {1, 2} (3)

and then separately decode the symbols in xi by using the
corresponding elements in zi. Several choices for matrix Bi

are possible. In this work, we consider the following cases:

• the zero-forcing (ZF) receiver where Bi =
(H̃H

i H̃i)
−1H̃H

i and
• the minimum mean square error (MMSE) receiver where

Bi = (I + pisiH̃
H
i H̃i)

−1H̃H
i .

Then, under such receivers, the achievable rate on the i-th
link can be compactly written as

ρi =

ni∑
j=1

log (1 + wi,j) where (4)

wi,j =


pisiλi,j for the optimum receiver

pisi

[(H̃H
i H̃i)−1]

j,j

for the ZF receiver
1

[(I+pisiH̃H
i H̃i)−1]

j,j

− 1 for the MMSE receiver
.

(5)
Notice that rate ρ1 is a function of both p1 and p2, since
the latter appears in the expression of N1, which, in turns,
contributes to s1. Instead, ρ2 is a function of the transmitted
power p2 only. Thus, in the following we denote these rates by
ρ1(p1, p2) and ρ2(p2), respectively. Communication between
S and D takes place over a sequence of time slots, each one
characterized by specific values of source and relay transmit
power. Let g(p2), p2 ∈ [0, pmax

2 ], be the distribution of the
relay transmit power p2. Then the average rates achieved on
the S−R and R−D links are, respectively, given by

R1(g, p1)=

∫ pmax
2

0

g(p2)ρ1(p1, p2) dp2; R2(g)=

∫ pmax
2

0

g(p2)ρ2(p2) dp2

(6)
where pmax

2 is the maximum transmit power the relay can use
on a single slot, and, by writing R1(g, p1) and R2(g), we
stress the fact that such average rates depend on the specific
choice of distribution g(·). The source transmit power, p1, can
be optimized, depending on the relay transmit power, p2. It
follows that p1 can be thought as a function, p1(p2), of the
relay transmit power p2. At last, we assume that the average
transmit power at both source and relay is set to p̄1 and p̄2,
respectively. In other words, we impose:

(a)

∫ pmax
2

0

p2g(p2) dp2 = p̄2; (b)

∫ pmax
2

0

p1(p2)g(p2) dp2 = p̄1 . (7)
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C. Problem statement

We are interested in finding the maximum end-to-end rate,
R, achievable between S and D. To this end, we formulate
the following optimization problem:

P0: R = max
g(·),p1(·)

min {R1(g, p1), R2(g)}

= max
g(·)

min

{
max
p1(·)

R1(g, p1), R2(g)

}
(8)

subject to (7) and
∫ pmax

2

0
g(p2) dp2 = 1, g(p2) ≥ 0. As shown

in [7], the maximizing distribution is typically discrete and
composed of few isolated probability masses in [0, pmax

2 ].

III. SOURCE TRANSMIT POWER OPTIMIZATION

The first step towards the solution of P0 is to optimize rate
R1(g, p1) for p1 ∈ [0, pmax

1 ], for any given g(·) such that it
meets constraint (7)a, under the constraint (7)b. To do so, we
define the Lagrangian

L(p1, p2) = g(p2)ρ1(p1, p2)− n1ψp1g(p2)

where ψ is a Lagrange multiplier and we solve for p?1 the
equation ∂

∂p?1
L(p?1, p2) = 0. By using (4), we obtain

ψ =
1

n1

d

dp?1
ρ1(p?1, p2) =

1

n1

n1∑
j=1

d
dp?1

w1,j

1 + w1,j
(9)

which holds for p?1 ∈ [0, pmax
1 ]. In (9), p?1 = p?1(p2) is the

optimal power profile at S, which depends on the transmit
power at R. Note that p?1(p2) also depends on the multiplier
ψ that has to satisfy (7)b, where p1(p2) is to be replaced with
p?1(p2).

Using quantities wi,j in (5), we specialize (9) as follows:

ψ =
1

n1

n1∑
j=1

s1λ1,j
1 + p?1s1λ1,j

(10)

for the optimum receiver and

ψ =
1

n1

n1∑
j=1

s1

[(H̃H
1 H̃1)−1]j,j + p?1s1

(11)

for the ZF receiver. As for the MMSE receiver, we first define
W = I + p?1s1H̃

H
1 H̃1 and we get

ψ =
1

n1

n1∑
j=1

∂
∂p?1

(
1

[W−1]j,j
− 1
)

1 + 1
[W−1]j,j

− 1

=
s1
n1

n1∑
j=1

[W−1H̃H
1 H̃1W

−1]j,j
[W−1]j,j

(12)

Observe that the expressions in (10), (11) and (12) are difficult
to solve for p?1 and, thus, a closed-form expression for p?1(p2)
is not available in general, as it would require to solve a poly-
nomial expression with degree equal to ni. Nonetheless, some
general considerations can be made. First, it is easy to see that
d

dp2
p?1(p2) ≤ 0, i.e., p?1(p2) is a non-increasing function of p2.

Hence, a unique real solution for p?1(p2) of (9) exists. This can
be proved by observing that d

dp2
p?1(p2) = − ∂t(p?1 ,p2)/∂p2

∂t(p?1 ,p2)/∂p
?
1

is

negative, where t(p?1, p2) = 1
n1

d
dp?1

ρ1(p?1, p2) is the implicit
function in (9).

As N1 → 0, we have s1 → ∞ and, hence, p?1 → 1
ψ

for all considered receive filters. This result can be obtained
by taking the limit for s1 → ∞ of the r.h.s of (10), (11)
and (12) (for the optimum receiver, we assume a full-rank
matrix H̃H

1 H̃1). Also, taking the limit for p?1 → 0 in (10),
we obtain ψ = s1λ̄1, i.e., p2 = 1

β

(
α1m1

ψn1
λ̄1 − I1

)
, ωOPT,

where λ̄1 = 1
n1

∑n1

j=1 λ1,j is the average eigenvalue of H̃H
1 H̃1.

The same expression is obtained by taking the limit for p?1 → 0
of (12). Indeed, one can observe that the average eigenvalue
λ̄1, can also be written as λ̄1 = 1

n1

∑ni

j=1[H̃H
1 H̃1]j,j . Instead,

the limit applied to (11) provides ψ = s1
n1

∑n1

j=1
1

[(H̃H
1H̃1)−1]j,j

,

i.e., p2 = 1
β

(
α1m1

ψn2
1

∑n1

j=1
1

[(H̃H
1H̃1)−1]j,j

− I1
)
, ωZF. Since

p?1(p2) is non-negative (being a power), from the above
considerations it follows that p?1(p2) = 0 for p2 > ωOPT

(OPT and MMSE receivers), and for p2 > ωZF (ZF receiver).
In the next section, we show instead that, when the number

of antennas at the network nodes grows large (while keeping
their ratios constant), we can obtain a closed-form expression
for the transmit power at source and relay, as well as for the
system end-to-end achievable rate.

IV. MMIMO: ASYMPTOTIC ANALYSIS

We now consider the case where the number of antennas at
S, R, and D grows large, while their ratios n1

m1
= ζ1, n2

m2
=

ζ2, and m1

n2
= ζr remain constant. In such a case, it is more

appropriate to consider as performance metric the normalized
rate R/n1 (i.e., the rate per source transmit antenna), instead
of R. Also, in order to keep a lighter notation, we will use the
symbol lim to denote the limit limn1,m1,n2,m2→∞ under the
constraint of constant ratios ζ1, ζ2, and ζr. Then, by using (8),
we define the asymptotic normalized rate:

R∞ , lim
R

n1
= max

g(·)
min

{
R?,∞1 (g),

ζr
ζ1
R∞2 (g)

}
(13)

R?,∞1 (g) and R∞2 (g) are the asymptotic normalized rates on
S−R and R−D, respectively,

R?,∞1 (g) , lim
R?1(g)

n1
=

∫ pmax
2

0

g(p2) lim
ρ?1(p2)

n1
dp2 (14)

R∞2 (g) , lim
R2(g)

m2
=

∫ pmax
2

0

g(p2) lim
ρ2(p2)

n2
dp2 (15)

In the asymptotic regime, the eigenvalues of matrices H1

and H2 assume particular properties. More specifically, if Hj ,
j = 1, 2 is an instance of matrix-variate random variable
whose entries are i.i.d., have zero-mean and variance 1, then,
as its size grows to infinity with constant ratio ζj ≥ 1, the
distribution of the generic eigenvalue λ of 1

mj
HH
jHj tends

to the Marčenko-Pastur law [7]: fj(λ) =

√
(λ−aj)(bj−λ)

2πλζj

with support in [aj , bj ], where aj =
(
1−

√
ζj
)2

, bj =(
1 +

√
ζj
)2

, and j = 1, 2. Also, the average eigenvalue is
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given by λ̄j = 1. Given the above asymptotic eigenvalue
distribution, for convenience we define

G(γ, ζj) ,
∫ bj

aj

log (1 + γλ) fj(λ) dλ

= log

(
1 + γ − F (γ, ζj)

4

)
− F (γ, ζj)

4ζjγ

+
1

ζj
log

(
1 + γζj −

F (γ, ζj)

4

)
(16)

where F (γ, ζj) ,
(√

γbj + 1−
√
γaj + 1

)2
.

Optimum receiver. In the asymptotic mMIMO regime, the
optimal source power, p?1(p2), tends to the asymptotic power
p?,∞1 (p2) whose expression can be explicitly derived from (9).
Indeed, ψ∞ , limψ is given by:

ψ∞= lim
1

n1

n1∑
j=1

s1λ1,j
1 + p?1s1λ1,j

=
s1
4ζ1

F (p?,∞1 s1, ζ1)

(p?,∞1 s1)2
(17)

The above equation has two solutions for p?,∞1 ; however,
recalling that p?,∞1 (p2) must be a decreasing function of p2
and that p?,∞1 ∈ [0, pmax

1 ], we obtain:

p?,∞1 = min

pmax
1 ,

[
1+ζ1−

√
(1−ζ1)2+4ζ1ψ∞/s1

2ψ∞ζ1

]+
From the discussion in Sec. III, we also find that p?,∞1 > 0

for p2 < ωOPT = 1
β

(
α1

ψ∞ζ1
− I1

)
. In the asymptotic regime,

the normalized rate achieved on the S−R link is given by

ρ?,∞1 (p2) = lim
ρ?1(p2)

n1

= lim
1

n1

n1∑
j=1

log (1+p?1s1λ1,j) =G(γ1, ζ1)(18)

where we defined γ1 , p?,∞1 s1. Similarly, defining γ2 , p2α2

ζ2I2
,

the normalized R−D rate is given by:

ρ∞2 (p2) = lim
ρ2(p2)

n2
= G(γ2, ζ1) (19)

ZF receiver. If the ZF filter is employed at the relay
receiver, the asymptotic optimal power profile can be obtained
by taking the limit of (11). For p?1 ∈ [0, pmax

1 ], we get

ψ∞= lim
1

n1

n1∑
j=1

s1

[(H̃H
1 H̃1)−1]j,j+p?1s1

=
s1

1
1−ζ1 +p?,∞1 s1

since [(H̃H
1 H̃1)−1]j,j → 1

1−ζ1 ∀j. It follows that:

p?,∞1 = min

{
pmax
1 ,

[
1

ψ∞
− 1

s1(1− ζ1)

]+}
,

p?,∞1 > 0 for p2 < ωZF = 1
β

(
α1(1−ζ1)
ψ∞ζ1

− I1
)

and

ρ∞1 (p2)= lim
1

n1

n1∑
j=1

log

(
1+

p?1s1
[(HH

1H1)−1]j,j

)
= log

s1(1−ζ1)

ψ∞

ρ∞2 (p2) = lim
1

n2

n2∑
j=1

log

(
1+

p2s2
[(HH

2H2)−1]j,j

)
= log (1+p2s2(1−ζ2)) (20)

MMSE receiver. As for the MMSE receiver, we first
observe that for any j, lim

[
W−1]

j,j
= 1

1+γ1−F (γ1,ζ1)/4

where we recall that W = I + γ1H̃
H
1 H̃1 and γ1 = p?,∞1 s1.

Thus, following (12), we can write:

ψ∞ = lim
1

n1

n1∑
j=1

[W−1]j,j
∂

∂p?1

(
1

[W−1]j,j

)
=

s1
4(1+γ1)−F (γ1, ζi)

(
4−∂F (γ1, ζi)

∂γ1

)
(21)

The above expression can be solved numerically for p?,∞1 ∈
[0, pmax

1 ]. Furthermore,

ρ?,∞1 (p2)= lim

−
n1∑
j=1

log[W−1]j,j

n1
= log

(
1+γ1−

F (γ1, ζi)

4

)
V. NUMERICAL RESULTS

We assess the performance of the proposed techniques in
a mMIMO scenario where both the S − R and R − D
distances are set to d=300 m, the signal carrier frequency is
fc = 2.6 GHz, and the signal bandwidth is B=200 kHz. The
path loss for both links is given by ai=( c

4πfc
)2d−pe=− 115

dBm, i=1, 2, where pe=3 is the path loss exponent and c
is the speed of light. The additive noise at both relay and
destination has power spectral density N0=−174 dBm/Hz, so
that the noise terms are given by I1=I2=N0B=− 121 dBm.
Moreover, we assume that the eigenvalues of H̃H

i H̃i follow
the Marčenko-Pastur law.

In such conditions and for the “OPT”, “ZF”, and “MMSE”
techniques, Fig. 2 shows the asymptotic transmit power
p?,∞1 (p2) plotted versus p2, for ψ∞=0.5, pmax

1 = 1 mW,
β= − 110 dB, and ζ1=0.5. For the sake of comparison, the
plot also depicts the asymptotic power profile obtained when
perfect CSI is available at the source and S applies singular
value decomposition (SVD) precoding, as described in [7,
Formula 35]. Note that, when considering our benchmark (i.e.,
SVD precoding at the transmitters) no ZF or MMSE filters
are considered at the receivers. When both p?,∞1 and p2 are
positive, R works in FD mode, whereas p?,∞1 =0 indicates
that R works in half-duplex (HD) mode. When the “MMSE”
and “OPT” techniques are employed, R is allowed to work in
FD mode for p2 < ωOPT≈1.17 mW; this threshold reduces
to p2 < ωZF≈0.545 mW for the “ZF” technique. Instead,
for the “SVD” case, we have p?,∞1 >0 for p2<ω

SVD ,
1
β

(
α1(1−

√
ζ1)

2

ψ∞ζ1
− I1

)
≈3.56 mW. Since ωSVD>ωOPT>ωZF

(the proof follows from the definition of such terms), SVD
is the most efficient in exploiting relay FD capabilities, as
it allows S to transmit for larger values of p2. However, as
mentioned, it requires full CSI at the transmitter. As for the
other techniques, while sharing the same threshold ωOPT with
“MMSE”, “OPT” allows R to transmit at higher power than
“MMSE”, thus leading to a higher relay efficiency.
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Fig. 2. Asymptotic transmit power profile p?,∞1 (p2) vs p2 for β = −110 dB,
ψ∞ = 0.5, ζ1 = 0.5, and pmax

1 = 1 mW.

-10 0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

SVD

OPT

ZF

MMSE

-10 0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

SVD

OPT

ZF

MMSE

Fig. 3. E2e normalized rate vs p̄1, for SVD precoding on the S − R link
and the analysed techniques with no precoding on the R−D one. SVD on
the R−D link (blue line) is taken as benchmark. β = −125 dB (left) and
β = −110 dB (right).

Fig. 3 shows the asymptotic normalized rate, R∞ plotted
versus p̄1 when the analysed techniques with no precoding
are used on the S − R, compared to the case where SVD
precoding is employed on the S − R link (in which case no
OPT, ZF, or MMSE are used at the receiver). Fig. 4, instead,
presents the system performance when the same technique is
applied to both links (again, SVD-SVD, with no OPT, ZF,
or MMSE at the receiver, is used as benchmark). For both
figures, we set pmax

1 =p̄1 + 3 dB, p̄2=20 dBm, pmax
2 =23 dBm,

ζ1=ζ2 = 0.8, and ζr=1. Also, the left plots in both figures
refer to a relay self-interference attenuation β= − 125 dB,
while the right plots correspond to β= − 110 dB. Rate R∞

is computed solving (13), by discretizing density g(p2) as
shown in [7]. Also, in Fig. 4 the numerical values, R/n1,
are obtained by solving the problem as in (8), for n1 = 64.
In the considered scenario, we notice that “OPT” matches
the performance of “SVD”, while not requiring CSI knowl-
edge at the transmitter. Further, “MMSE” and “ZF” behave
very similarly and, although suboptimal, they entail only a
moderate performance degradation with respect to “OPT”.
In particular, Fig. 3 shows that when “SVD” is applied to
the S − R link, the choice of the technique on the R − D
link does not have a significant impact, especially for low
values of p̄1. Also, the performance is very sensitive to the
self-interference attenuation: when β changes from −110 dB
to −125 dB, R∞ increases by about 1 nat/s/Hz per transmit
antenna at p̄1=30 dBm, which highlights the importance of
self-interference attenuation at the relay. Finally, we underline
the excellent match between asymptotic and numerical results.
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Fig. 4. Asymptotic and numerical e2e normalized rate vs p̄1, for the analyzed
techniques with no precoding on either links, and the SVD-SVD benchmark
(blue line). n1 = 64, β = −125 dB (left) and β = −110 dB (right).

VI. CONCLUSIONS

We addressed massive MIMO full-duplex relay networks
working in decode-and-forward mode, where CSI at any of the
transmitters is unavailable. We studied the system performance
when precoding is implemented at neither the source nor the
relay, or it can be performed at the source only. To this end, we
considered the transmit power at the source to depend on that
at the relay, and formulate a problem that aims at maximizing
the end-to-end network rate. Then, by letting the number of
antennas grow large, we obtain closed-form expressions for
the nodes transmit power and the system data rate. Our results
show that with no precoding at the relay, or even at neither
the transmitting nodes, the data rate closely matches the values
achieved with SVD precoding when the optimum receiver is
used, and no substantial degradation is observed in the case
of ZF or MMSE receivers.
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