One of the main tasks of new-generation cellular networks is the support of the wide range of virtual services that may be requested by vertical industries, while fulfilling their diverse performance requirements. Such task is made even more challenging by the time-varying service and traffic demands, and the need for a fully-automated network orchestration and management to reduce the service operational costs incurred by the network provider. In this paper, we address these issues by proposing a softwarized 5G network architecture that realizes the concept of ML-as-a-Service (MLaaS) in a flexible and efficient manner. The designed MLaaS platform can provide the different entities of a MANO architecture with already-trained ML models, ready to be used for decision making. In particular, we show how our MLaaS platform enables the development of two ML-driven algorithms for, respectively, network slice subnet sharing and run-time service scaling. The proposed approach and solutions are implemented and validated through an experimental testbed in the case of three different services in the automotive domain, while their performance is assessed through simulation in a large-scale, real-world scenario. In-testbed validation shows that the use of the MLaaS platform within the designed architecture and the ML-driven decision-making processes entail a very limited time overhead, while simulation results highlight remarkable savings in operational costs, e.g., up to 40% reduction in CPU consumption and up to 30% reduction in the OPEX.

ML-driven Provisioning and Management of Vertical Services in Automated Cellular Networks / Casetti, C.; Chiasserini, C. F.; Marcato, S.; Puligheddu, C.; Mangues-Bafalluy, J.; Baranda, J.; Brenes, J.; Bocchi, F.; Landi, G.; Bakhshi, B.. - In: IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT. - ISSN 1932-4537. - STAMPA. - 19:3(2022), pp. 2017-2033. [10.1109/TNSM.2022.3153087]

ML-driven Provisioning and Management of Vertical Services in Automated Cellular Networks

Casetti, C.;Chiasserini, C. F.;Puligheddu, C.;
2022

Abstract

One of the main tasks of new-generation cellular networks is the support of the wide range of virtual services that may be requested by vertical industries, while fulfilling their diverse performance requirements. Such task is made even more challenging by the time-varying service and traffic demands, and the need for a fully-automated network orchestration and management to reduce the service operational costs incurred by the network provider. In this paper, we address these issues by proposing a softwarized 5G network architecture that realizes the concept of ML-as-a-Service (MLaaS) in a flexible and efficient manner. The designed MLaaS platform can provide the different entities of a MANO architecture with already-trained ML models, ready to be used for decision making. In particular, we show how our MLaaS platform enables the development of two ML-driven algorithms for, respectively, network slice subnet sharing and run-time service scaling. The proposed approach and solutions are implemented and validated through an experimental testbed in the case of three different services in the automotive domain, while their performance is assessed through simulation in a large-scale, real-world scenario. In-testbed validation shows that the use of the MLaaS platform within the designed architecture and the ML-driven decision-making processes entail a very limited time overhead, while simulation results highlight remarkable savings in operational costs, e.g., up to 40% reduction in CPU consumption and up to 30% reduction in the OPEX.
File in questo prodotto:
File Dimensione Formato  
FINAL VERSION.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 1.68 MB
Formato Adobe PDF
1.68 MB Adobe PDF Visualizza/Apri
ML-Driven_Provisioning_and_Management_of_Vertical_Services_in_Automated_Cellular_Networks.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.07 MB
Formato Adobe PDF
2.07 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2955729