In the presence of gestational diabetes mellitus (GDM), the fetus is exposed to a hyperinsulinemia environment. This environment can cause a wide range of metabolic and fetal cardiac structural alterations. Fetal myocardial hypertrophy predominantly affecting the interventricular septum possesses a morphology of disarray similar to hypertrophic cardiomyopathy, and may be present in some GDM neonates after birth. Myocardial thickness may increase in GDM fetuses independent of glycemic control status and fetal weight. Fetal echocardiography performed on fetuses with GDM helps in assessing cardiac structure and function, and to diagnose myocardial hypertrophy. There are few studies in the literature which have established evidence for morphologic variation associated with cardiac hypertrophy among fetuses of GDM mothers. In this study, fetal ultrasound images of normal, pregestational diabetes mellitus (preGDM) and GDM mothers were used to develop a computer aided diagnostic (CAD) tool. We proposed a new method called local preserving class separation (LPCS) framework to preserve the geometrical configuration of normal and preGDM/GDM subjects. The generated shearlet based texture features under LPCS framework showed promising results compared with deep learning algorithms. The proposed method achieved a maximum accuracy of 98.15% using a support vector machine (SVM) classifier. Hence, this paradigm can be helpful to physicians in detecting fetal myocardial hypertrophy in preGDM/GDM mothers.

Local Preserving Class Separation Framework to Identify Gestational Diabetes Mellitus Mother Using Ultrasound Fetal Cardiac Image / Gudigar, A.; Samanth, J.; Raghavendra, U.; Dharmik, C.; Vasudeva, A.; Padmakumar, R.; Tan, R. -S.; Ciaccio, E. J.; Molinari, F.; Rajendra Acharya, U.. - In: IEEE ACCESS. - ISSN 2169-3536. - ELETTRONICO. - 8:(2020), pp. 229043-229051. [10.1109/ACCESS.2020.3042594]

Local Preserving Class Separation Framework to Identify Gestational Diabetes Mellitus Mother Using Ultrasound Fetal Cardiac Image

Molinari F.;
2020

Abstract

In the presence of gestational diabetes mellitus (GDM), the fetus is exposed to a hyperinsulinemia environment. This environment can cause a wide range of metabolic and fetal cardiac structural alterations. Fetal myocardial hypertrophy predominantly affecting the interventricular septum possesses a morphology of disarray similar to hypertrophic cardiomyopathy, and may be present in some GDM neonates after birth. Myocardial thickness may increase in GDM fetuses independent of glycemic control status and fetal weight. Fetal echocardiography performed on fetuses with GDM helps in assessing cardiac structure and function, and to diagnose myocardial hypertrophy. There are few studies in the literature which have established evidence for morphologic variation associated with cardiac hypertrophy among fetuses of GDM mothers. In this study, fetal ultrasound images of normal, pregestational diabetes mellitus (preGDM) and GDM mothers were used to develop a computer aided diagnostic (CAD) tool. We proposed a new method called local preserving class separation (LPCS) framework to preserve the geometrical configuration of normal and preGDM/GDM subjects. The generated shearlet based texture features under LPCS framework showed promising results compared with deep learning algorithms. The proposed method achieved a maximum accuracy of 98.15% using a support vector machine (SVM) classifier. Hence, this paradigm can be helpful to physicians in detecting fetal myocardial hypertrophy in preGDM/GDM mothers.
2020
File in questo prodotto:
File Dimensione Formato  
Local_Preserving_Class_Separation_Framework_to_Identify_Gestational_Diabetes_Mellitus_Mother_Using_Ultrasound_Fetal_Cardiac_Image.pdf

accesso aperto

Descrizione: Articolo in versione pubblicata
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 1.18 MB
Formato Adobe PDF
1.18 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2954675