Cf/ZrB2-SiC ultra-high temperature composites were manufactured via aqueous slurry impregnation coupled with polymer infiltration and pyrolysis, using a allylhydrido polycarbosilane precursor. For the first time we used ultra-high modulus pitch-based carbon fibres for the PIP process, investigating three different architectures, 0/0°, 0/90°, and 2D. Microstructure, mechanical properties and oxidation resistance in air at 1650 °C were investigated. As expected, the mechanical properties showed the tendency to decrease with increase of the preforms complexity, due to the higher amount of flaws and residual stresses. For instance, the flexural strength was approaching 500 MPa for 0/0°, 370 MPa for 0/90° and 190 MPa for 2D. The materials showed an optimal resistance to oxidation at 1650 °C thanks to formation of a viscous borosilicate glass that guaranteed a self-healing functionality.
Development of UHTCMCs via water based ZrB2 powder slurry infiltration and polymer infiltration and pyrolysis / Servadei, F.; Zoli, L.; Galizia, P.; Vinci, A.; Sciti, D.. - In: JOURNAL OF THE EUROPEAN CERAMIC SOCIETY. - ISSN 0955-2219. - ELETTRONICO. - 40:15(2020), pp. 5076-5084. [10.1016/j.jeurceramsoc.2020.05.054]
Development of UHTCMCs via water based ZrB2 powder slurry infiltration and polymer infiltration and pyrolysis
Galizia P.;Vinci A.;
2020
Abstract
Cf/ZrB2-SiC ultra-high temperature composites were manufactured via aqueous slurry impregnation coupled with polymer infiltration and pyrolysis, using a allylhydrido polycarbosilane precursor. For the first time we used ultra-high modulus pitch-based carbon fibres for the PIP process, investigating three different architectures, 0/0°, 0/90°, and 2D. Microstructure, mechanical properties and oxidation resistance in air at 1650 °C were investigated. As expected, the mechanical properties showed the tendency to decrease with increase of the preforms complexity, due to the higher amount of flaws and residual stresses. For instance, the flexural strength was approaching 500 MPa for 0/0°, 370 MPa for 0/90° and 190 MPa for 2D. The materials showed an optimal resistance to oxidation at 1650 °C thanks to formation of a viscous borosilicate glass that guaranteed a self-healing functionality.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0955221920304064-main.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
5.47 MB
Formato
Adobe PDF
|
5.47 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
JECS-D-20- 00875R1.pdf
Open Access dal 26/05/2022
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Creative commons
Dimensione
1.67 MB
Formato
Adobe PDF
|
1.67 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2952168