Off-axis strength retention of continuous carbon fiber-reinforced dense ZrB2-based ceramics (Cf/ZrB2) after thermal or indentation damage was evaluated. Thermal damage was in-situ induced and characterized by cyclic dilatometric analysis. Indentation damage was induced through Vickers indentation and then characterized by digital microscopy. The investigation of Vickers imprints suggested that residual stresses promoted the material pileup onto the fibers’ plane and the appearance of out-of-plane freed fibers (OFF). On the other hand, thermal damage reduced the residual stresses and left inner freed fibers (IFF) that enhanced the elastic response. Finally, the flexural tests on damaged specimens unexpectedly revealed that Cf/ZrB2 kept its load bearing capability either after thermal or indentation damage (in both cases) and showed damage insensitivity although tested in fully matrix-dominated loading configuration (off-axis configuration).
Off-axis damage tolerance of fiber-reinforced composites for aerospace systems / Galizia, P.; Sciti, D.; Saraga, F.; Zoli, L.. - In: JOURNAL OF THE EUROPEAN CERAMIC SOCIETY. - ISSN 0955-2219. - STAMPA. - 40:7(2020), pp. 2691-2698. [10.1016/j.jeurceramsoc.2019.12.038]
Off-axis damage tolerance of fiber-reinforced composites for aerospace systems
Galizia P.;
2020
Abstract
Off-axis strength retention of continuous carbon fiber-reinforced dense ZrB2-based ceramics (Cf/ZrB2) after thermal or indentation damage was evaluated. Thermal damage was in-situ induced and characterized by cyclic dilatometric analysis. Indentation damage was induced through Vickers indentation and then characterized by digital microscopy. The investigation of Vickers imprints suggested that residual stresses promoted the material pileup onto the fibers’ plane and the appearance of out-of-plane freed fibers (OFF). On the other hand, thermal damage reduced the residual stresses and left inner freed fibers (IFF) that enhanced the elastic response. Finally, the flexural tests on damaged specimens unexpectedly revealed that Cf/ZrB2 kept its load bearing capability either after thermal or indentation damage (in both cases) and showed damage insensitivity although tested in fully matrix-dominated loading configuration (off-axis configuration).File | Dimensione | Formato | |
---|---|---|---|
Off-axis damage tolerance of fiber-reinforced composites for aerospace systems.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
7.95 MB
Formato
Adobe PDF
|
7.95 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Off-axis damage tolerance of fiber-reinforced composites for aerospace systems JECS 2020 2691-2698.pdf
Open Access dal 20/12/2021
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
1.54 MB
Formato
Adobe PDF
|
1.54 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2952101