This paper discusses the application of a probabilistic surrogate modeling technique, based on Gaussian process regression (GPR), to the uncertainty quantification (UQ) of crosstalk. Compared to traditional deterministic surrogate models, the GPR provides a stochastic process that carries an estimate of the model uncertainty. This allows assigning confidence bounds to the model prediction and, in an UQ scenario, to statistical estimates. The advocated method is illustrated through its application to a literature test case.
Statistical crosstalk analysis via probabilistic machine learning surrogates / Manfredi, Paolo; Trinchero, Riccardo. - ELETTRONICO. - (2021), pp. 1-3. (Intervento presentato al convegno IEEE 30th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS 2021) tenutosi a Austin, TX, USA nel 17-20 ottobre 2021) [10.1109/EPEPS51341.2021.9609229].
Statistical crosstalk analysis via probabilistic machine learning surrogates
Manfredi, Paolo;Trinchero, Riccardo
2021
Abstract
This paper discusses the application of a probabilistic surrogate modeling technique, based on Gaussian process regression (GPR), to the uncertainty quantification (UQ) of crosstalk. Compared to traditional deterministic surrogate models, the GPR provides a stochastic process that carries an estimate of the model uncertainty. This allows assigning confidence bounds to the model prediction and, in an UQ scenario, to statistical estimates. The advocated method is illustrated through its application to a literature test case.File | Dimensione | Formato | |
---|---|---|---|
manfredi-EPEPS-2021-final.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
353.71 kB
Formato
Adobe PDF
|
353.71 kB | Adobe PDF | Visualizza/Apri |
cnf-2021-EPEPS.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
813.35 kB
Formato
Adobe PDF
|
813.35 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2949650