This paper discusses the application of a probabilistic surrogate modeling technique, based on Gaussian process regression (GPR), to the uncertainty quantification (UQ) of crosstalk. Compared to traditional deterministic surrogate models, the GPR provides a stochastic process that carries an estimate of the model uncertainty. This allows assigning confidence bounds to the model prediction and, in an UQ scenario, to statistical estimates. The advocated method is illustrated through its application to a literature test case.

Statistical crosstalk analysis via probabilistic machine learning surrogates / Manfredi, Paolo; Trinchero, Riccardo. - ELETTRONICO. - (2021), pp. 1-3. (Intervento presentato al convegno IEEE 30th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS 2021) tenutosi a Austin, TX, USA nel 17-20 ottobre 2021) [10.1109/EPEPS51341.2021.9609229].

Statistical crosstalk analysis via probabilistic machine learning surrogates

Manfredi, Paolo;Trinchero, Riccardo
2021

Abstract

This paper discusses the application of a probabilistic surrogate modeling technique, based on Gaussian process regression (GPR), to the uncertainty quantification (UQ) of crosstalk. Compared to traditional deterministic surrogate models, the GPR provides a stochastic process that carries an estimate of the model uncertainty. This allows assigning confidence bounds to the model prediction and, in an UQ scenario, to statistical estimates. The advocated method is illustrated through its application to a literature test case.
2021
978-1-6654-4269-5
File in questo prodotto:
File Dimensione Formato  
manfredi-EPEPS-2021-final.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 353.71 kB
Formato Adobe PDF
353.71 kB Adobe PDF Visualizza/Apri
cnf-2021-EPEPS.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 813.35 kB
Formato Adobe PDF
813.35 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2949650