This paper introduces a compression strategy to speed-up the calculation of frequency-domain stochastic models based on rational polynomial chaos expansions. Principal component analysis is used to remove redundancy in the data, thus leading to a considerable reduction in the number of model coefficients to estimate. Compared to the state-of-the-art techniques, the proposed solution turns out to be a good tradeoff between accuracy and processing efficiency. As a validation, the method is applied to the uncertainty quantification of the scattering responses of a nine-port distributed network.

Compressed stochastic macromodeling of electrical systems via rational polynomial chaos and principal component analysis / Manfredi, Paolo; Grivet-Talocia, Stefano. - ELETTRONICO. - (2021), pp. 1-3. (Intervento presentato al convegno 2021 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC 2021) tenutosi a Bali, Indonesia nel 27-30 settembre 2021) [10.1109/APEMC49932.2021.9596663].

Compressed stochastic macromodeling of electrical systems via rational polynomial chaos and principal component analysis

Manfredi, Paolo;Grivet-Talocia, Stefano
2021

Abstract

This paper introduces a compression strategy to speed-up the calculation of frequency-domain stochastic models based on rational polynomial chaos expansions. Principal component analysis is used to remove redundancy in the data, thus leading to a considerable reduction in the number of model coefficients to estimate. Compared to the state-of-the-art techniques, the proposed solution turns out to be a good tradeoff between accuracy and processing efficiency. As a validation, the method is applied to the uncertainty quantification of the scattering responses of a nine-port distributed network.
2021
978-1-7281-7621-5
File in questo prodotto:
File Dimensione Formato  
2021130778.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 998.38 kB
Formato Adobe PDF
998.38 kB Adobe PDF Visualizza/Apri
cnf-2021-APEMC.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.21 MB
Formato Adobe PDF
2.21 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2949647