This paper introduces a compression strategy to speed-up the calculation of frequency-domain stochastic models based on rational polynomial chaos expansions. Principal component analysis is used to remove redundancy in the data, thus leading to a considerable reduction in the number of model coefficients to estimate. Compared to the state-of-the-art techniques, the proposed solution turns out to be a good tradeoff between accuracy and processing efficiency. As a validation, the method is applied to the uncertainty quantification of the scattering responses of a nine-port distributed network.
Compressed stochastic macromodeling of electrical systems via rational polynomial chaos and principal component analysis / Manfredi, Paolo; Grivet-Talocia, Stefano. - ELETTRONICO. - (2021), pp. 1-3. (Intervento presentato al convegno 2021 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC 2021) tenutosi a Bali, Indonesia nel 27-30 settembre 2021) [10.1109/APEMC49932.2021.9596663].
Compressed stochastic macromodeling of electrical systems via rational polynomial chaos and principal component analysis
Manfredi, Paolo;Grivet-Talocia, Stefano
2021
Abstract
This paper introduces a compression strategy to speed-up the calculation of frequency-domain stochastic models based on rational polynomial chaos expansions. Principal component analysis is used to remove redundancy in the data, thus leading to a considerable reduction in the number of model coefficients to estimate. Compared to the state-of-the-art techniques, the proposed solution turns out to be a good tradeoff between accuracy and processing efficiency. As a validation, the method is applied to the uncertainty quantification of the scattering responses of a nine-port distributed network.File | Dimensione | Formato | |
---|---|---|---|
2021130778.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
998.38 kB
Formato
Adobe PDF
|
998.38 kB | Adobe PDF | Visualizza/Apri |
cnf-2021-APEMC.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
2.21 MB
Formato
Adobe PDF
|
2.21 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2949647