Design of modern photonic devices requires to handle a large number of parameters and figures of merit. By scaling down the complexity of the problem, machine learning dimensionality reduction enables the discovery of better performing devices, higher integration scale, and efficient evaluation of fabrication tolerances.
Dimensionality reduction for the on-chip integration of advanced photonic devices and functionalities / Melati, Daniele; Dezfouli, Mohsen Kamandar; Grinberg, Yuri; Al-Digeil, Muhammad; Xu, Dan-Xia; Schmid, Jens H.; Cheben, Pavel; Waqas, Abi; Manfredi, Paolo; Zhang, Jianhao; Vivien, Laurent; Alonso-Ramos, Carlos. - ELETTRONICO. - (2021), pp. 1-4. (Intervento presentato al convegno 2021 European Conference on Optical Communication (ECOC 2021) tenutosi a Bordeaux, Francia nel 13-16 settembre 2021) [10.1109/ECOC52684.2021.9606084].
Dimensionality reduction for the on-chip integration of advanced photonic devices and functionalities
Manfredi, Paolo;
2021
Abstract
Design of modern photonic devices requires to handle a large number of parameters and figures of merit. By scaling down the complexity of the problem, machine learning dimensionality reduction enables the discovery of better performing devices, higher integration scale, and efficient evaluation of fabrication tolerances.File | Dimensione | Formato | |
---|---|---|---|
cnf-2021-ECOC.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.07 MB
Formato
Adobe PDF
|
1.07 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
ecoc_melati_2021_verified.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
397.34 kB
Formato
Adobe PDF
|
397.34 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2949643