The unit sphere S in Cn is equipped with the tangential Cauchy–Riemann complex and the associated Laplacian □ b. We prove a Hörmander spectral multiplier theorem for □ b with critical index n- 1 / 2 , that is, half the topological dimension of S. Our proof is mainly based on representation theory and on a detailed analysis of the spaces of differential forms on S.

Spectral multipliers for the Kohn Laplacian on forms on the sphere in Cn / Casarino, V.; Cowling, M. G.; Martini, A.; Sikora, A.. - In: THE JOURNAL OF GEOMETRIC ANALYSIS. - ISSN 1050-6926. - STAMPA. - 27:4(2017), pp. 3302-3338. [10.1007/s12220-017-9806-3]

Spectral multipliers for the Kohn Laplacian on forms on the sphere in Cn

Casarino V.;Martini A.;
2017

Abstract

The unit sphere S in Cn is equipped with the tangential Cauchy–Riemann complex and the associated Laplacian □ b. We prove a Hörmander spectral multiplier theorem for □ b with critical index n- 1 / 2 , that is, half the topological dimension of S. Our proof is mainly based on representation theory and on a detailed analysis of the spaces of differential forms on S.
File in questo prodotto:
File Dimensione Formato  
Casarino2017_Article_SpectralMultipliersForTheKohnL.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 625.4 kB
Formato Adobe PDF
625.4 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
complexspheres-revised.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 312.32 kB
Formato Adobe PDF
312.32 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2949480