The unit sphere S in Cn is equipped with the tangential Cauchy–Riemann complex and the associated Laplacian □ b. We prove a Hörmander spectral multiplier theorem for □ b with critical index n- 1 / 2 , that is, half the topological dimension of S. Our proof is mainly based on representation theory and on a detailed analysis of the spaces of differential forms on S.
Spectral multipliers for the Kohn Laplacian on forms on the sphere in Cn / Casarino, V.; Cowling, M. G.; Martini, A.; Sikora, A.. - In: THE JOURNAL OF GEOMETRIC ANALYSIS. - ISSN 1050-6926. - STAMPA. - 27:4(2017), pp. 3302-3338. [10.1007/s12220-017-9806-3]
Spectral multipliers for the Kohn Laplacian on forms on the sphere in Cn
Casarino V.;Martini A.;
2017
Abstract
The unit sphere S in Cn is equipped with the tangential Cauchy–Riemann complex and the associated Laplacian □ b. We prove a Hörmander spectral multiplier theorem for □ b with critical index n- 1 / 2 , that is, half the topological dimension of S. Our proof is mainly based on representation theory and on a detailed analysis of the spaces of differential forms on S.File | Dimensione | Formato | |
---|---|---|---|
Casarino2017_Article_SpectralMultipliersForTheKohnL.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
625.4 kB
Formato
Adobe PDF
|
625.4 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
complexspheres-revised.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
312.32 kB
Formato
Adobe PDF
|
312.32 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2949480