We describe the ground state of a gas of bosonic atoms with two coherently coupled internal levels in a deep optical lattice in a one-dimensional geometry. In the single-band approximation this system is described by a Bose-Hubbard Hamiltonian. The system has a superfluid and a Mott insulating phase that can be either paramagnetic or ferromagnetic. We characterize the quantum phase transitions at unit filling by means of a density-matrix renormalization-group technique and compare the results with a mean-field approach and an effective spin Hamiltonian. The presence of the ferromagnetic Ising-like transition modifies the Mott lobes. In the Mott insulating region the system maps to the ferromagnetic spin-1/2 XXZ model in a transverse field and the numerical results compare very well with the analytical results obtained from the spin model. In the superfluid regime quantum fluctuations strongly modify the phase transition with respect to the well-established mean-field three-dimensional classical bifurcation.
Magnetic phase transition in coherently coupled Bose gases in optical lattices / Barbiero, L.; Abad, M.; Recati, A.. - In: PHYSICAL REVIEW A. - ISSN 2469-9926. - ELETTRONICO. - 93:3(2016). [10.1103/PhysRevA.93.033645]
Magnetic phase transition in coherently coupled Bose gases in optical lattices
Barbiero L.;
2016
Abstract
We describe the ground state of a gas of bosonic atoms with two coherently coupled internal levels in a deep optical lattice in a one-dimensional geometry. In the single-band approximation this system is described by a Bose-Hubbard Hamiltonian. The system has a superfluid and a Mott insulating phase that can be either paramagnetic or ferromagnetic. We characterize the quantum phase transitions at unit filling by means of a density-matrix renormalization-group technique and compare the results with a mean-field approach and an effective spin Hamiltonian. The presence of the ferromagnetic Ising-like transition modifies the Mott lobes. In the Mott insulating region the system maps to the ferromagnetic spin-1/2 XXZ model in a transverse field and the numerical results compare very well with the analytical results obtained from the spin model. In the superfluid regime quantum fluctuations strongly modify the phase transition with respect to the well-established mean-field three-dimensional classical bifurcation.File | Dimensione | Formato | |
---|---|---|---|
PhysRevA.93.033645.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
286.56 kB
Formato
Adobe PDF
|
286.56 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2948178