Current solutions to tackle phishing employ blocklists that are built from user reports or automatic approaches. They, however, fall short in detecting zero-day phishing attacks. We propose the use of Generative Adversarial Networks (GANs) to automate the generation of new squatting candidates starting from a list of benign URLs. The candidates can be either manually verified or become part of a training set for existing machine learning models. Our results show that GANs can produce squatting candidates, some of which are previously unknown existing phishing domains.

Augmenting phishing squatting detection with GANs / Valentim, Rodolfo; Drago, Idilio; Trevisan, Martino; Cerutti, Federico; Mellia, Marco. - ELETTRONICO. - (2021), pp. 3-4. (Intervento presentato al convegno ACM CoNEXT 2021 - International Conference on emerging Networking EXperiments and Technologies tenutosi a Virtual Event Germany nel 7 December 2021) [10.1145/3488658.3493787].

Augmenting phishing squatting detection with GANs

Valentim, Rodolfo;Drago, Idilio;Trevisan, Martino;Mellia, Marco
2021

Abstract

Current solutions to tackle phishing employ blocklists that are built from user reports or automatic approaches. They, however, fall short in detecting zero-day phishing attacks. We propose the use of Generative Adversarial Networks (GANs) to automate the generation of new squatting candidates starting from a list of benign URLs. The candidates can be either manually verified or become part of a training set for existing machine learning models. Our results show that GANs can produce squatting candidates, some of which are previously unknown existing phishing domains.
2021
9781450391337
File in questo prodotto:
File Dimensione Formato  
3488658.3493787.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.24 MB
Formato Adobe PDF
1.24 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
_CoNext_Student_2021___Augmenting_Phishing_Domain_Squatting_Training_Dataset_with_GANs.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 1.27 MB
Formato Adobe PDF
1.27 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2943633