The development of particle accelerators with ever increasing energies is raising the standards of the structures which could interact with the particle beams. These structures could be subjected to strong shockwaves in accidental scenarios. In order to test materials in such conditions, one of the most promising techniques is the impact with high-power lasers. In view of the setting up of future experimental campaigns within the Petawatt High-Energy Laser for Heavy Ion Experiments (PHELIX), the present work aims at the development of a numerical approach for the simulation of graphite impacted by laser beams. In particular, the focus is on the spallation damage caused by shockwave reflection: a sufficiently intense laser beam could ablate the matter until plasma conditions, hence producing a shockwave which could travel inside the material and reach a free surface. A numerical model to properly describe the spall fragmentation of graphite has been calibrated on the basis of literature-available experimental data. The numerical approach is a 'two-step' procedure: the first step is the definition of the laser-matter interaction and the second one concerns the description of the shockwave evolution into matter. The simulations satisfactorily reproduce the dynamic response of graphite impacted by two different laser sources with various intensities, despite the difficulties of characterising a phenomenon which is extremely fast and chaotic.

Numerical Simulations of Laser-Induced Shock Experiments on Graphite / Morena, Alberto; Peroni, Lorenzo. - In: MATERIALS. - ISSN 1996-1944. - ELETTRONICO. - 14:22(2021). [10.3390/ma14227079]

Numerical Simulations of Laser-Induced Shock Experiments on Graphite

Alberto Morena;Lorenzo Peroni
2021

Abstract

The development of particle accelerators with ever increasing energies is raising the standards of the structures which could interact with the particle beams. These structures could be subjected to strong shockwaves in accidental scenarios. In order to test materials in such conditions, one of the most promising techniques is the impact with high-power lasers. In view of the setting up of future experimental campaigns within the Petawatt High-Energy Laser for Heavy Ion Experiments (PHELIX), the present work aims at the development of a numerical approach for the simulation of graphite impacted by laser beams. In particular, the focus is on the spallation damage caused by shockwave reflection: a sufficiently intense laser beam could ablate the matter until plasma conditions, hence producing a shockwave which could travel inside the material and reach a free surface. A numerical model to properly describe the spall fragmentation of graphite has been calibrated on the basis of literature-available experimental data. The numerical approach is a 'two-step' procedure: the first step is the definition of the laser-matter interaction and the second one concerns the description of the shockwave evolution into matter. The simulations satisfactorily reproduce the dynamic response of graphite impacted by two different laser sources with various intensities, despite the difficulties of characterising a phenomenon which is extremely fast and chaotic.
2021
File in questo prodotto:
File Dimensione Formato  
materials-14-07079 (1).pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 4.09 MB
Formato Adobe PDF
4.09 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2941292