Additive Manufacturing (AM) has been identified as a disruptive technology, that enables the transition to Industry 4.0 and allows companies to re-think and re-design both their products and manufacturing approaches. In such a context, the opportunity of using AM to extend the life of a product through repair could also allow the founding principles of the circular economy to be implemented. This paper deals with the development of a repair procedure for mold inserts, made of H13 steel, that are used to cast aluminum cylinder heads for internal combustion engines. The repair operations were experimentally performed in a hybrid additive-subtractive manufacturing center used for Wire Arc Additive Manufacturing. Once the technological and quality results that are required by the strict industrial standards had been verified, the life-cycle energy and carbon footprint of the repair approach were quantified and compared with those of the conventional substitution-based approach. Overall, at the end of the first life of the insert, the results highlighted that the WAAM- and repair-based approach could allow potential savings for both performance metrics, compared with the insert being machined from a massive workpiece as a substitute, despite requiring several manufacturing steps and incoming feedstock material characterized by a high embodied energy. Moreover, the environmental benefits of the proposed approach are amplified when multiple repair loops are considered, even for a lower lifespan for the repaired mold insert.

Life-cycle energy and carbon saving potential of Wire Arc Additive Manufacturing for the repair of mold inserts / Priarone, Paolo Claudio; Campatelli, Gianni; Catalano, Angioletta Rita; Baffa, Francesco. - In: CIRP JOURNAL OF MANUFACTURING SCIENCE AND TECHNOLOGY. - ISSN 1878-0016. - ELETTRONICO. - 35:(2021), pp. 943-958. [10.1016/j.cirpj.2021.10.007]

Life-cycle energy and carbon saving potential of Wire Arc Additive Manufacturing for the repair of mold inserts

Priarone, Paolo Claudio;Catalano, Angioletta Rita;
2021

Abstract

Additive Manufacturing (AM) has been identified as a disruptive technology, that enables the transition to Industry 4.0 and allows companies to re-think and re-design both their products and manufacturing approaches. In such a context, the opportunity of using AM to extend the life of a product through repair could also allow the founding principles of the circular economy to be implemented. This paper deals with the development of a repair procedure for mold inserts, made of H13 steel, that are used to cast aluminum cylinder heads for internal combustion engines. The repair operations were experimentally performed in a hybrid additive-subtractive manufacturing center used for Wire Arc Additive Manufacturing. Once the technological and quality results that are required by the strict industrial standards had been verified, the life-cycle energy and carbon footprint of the repair approach were quantified and compared with those of the conventional substitution-based approach. Overall, at the end of the first life of the insert, the results highlighted that the WAAM- and repair-based approach could allow potential savings for both performance metrics, compared with the insert being machined from a massive workpiece as a substitute, despite requiring several manufacturing steps and incoming feedstock material characterized by a high embodied energy. Moreover, the environmental benefits of the proposed approach are amplified when multiple repair loops are considered, even for a lower lifespan for the repaired mold insert.
File in questo prodotto:
File Dimensione Formato  
Revised_Manuscript.pdf

Open Access dal 09/11/2023

Descrizione: Articolo principale
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 958.03 kB
Formato Adobe PDF
958.03 kB Adobe PDF Visualizza/Apri
1-s2.0-S175558172100170X-main.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 7.99 MB
Formato Adobe PDF
7.99 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2937666