We present a semi-Lagrangian scheme for the approximation of a class of Hamilton- Jacobi-Bellman (HJB) equations on networks. The scheme is explicit, consistent, and stable for large time steps. We prove a convergence result and two error estimates. For an HJB equation with space-independent Hamiltonian, we obtain a first order error estimate. In the general case, we provide, under a hyperbolic CFL condition, a convergence estimate of order one half. The theoretical results are discussed and validated in a numerical tests section.
A semi-lagrangian scheme for hamilton-jacobi-bellman equations on networks / Carlini, E.; Festa, A.; Forcadel, N.. - In: SIAM JOURNAL ON NUMERICAL ANALYSIS. - ISSN 0036-1429. - 58:6(2020), pp. 3165-3196. [10.1137/19M1260931]
A semi-lagrangian scheme for hamilton-jacobi-bellman equations on networks
FESTA A.;
2020
Abstract
We present a semi-Lagrangian scheme for the approximation of a class of Hamilton- Jacobi-Bellman (HJB) equations on networks. The scheme is explicit, consistent, and stable for large time steps. We prove a convergence result and two error estimates. For an HJB equation with space-independent Hamiltonian, we obtain a first order error estimate. In the general case, we provide, under a hyperbolic CFL condition, a convergence estimate of order one half. The theoretical results are discussed and validated in a numerical tests section.File | Dimensione | Formato | |
---|---|---|---|
20_CarliniFestaForcadel_SINUM.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.42 MB
Formato
Adobe PDF
|
1.42 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
SLNetwork_Rev2.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
1.46 MB
Formato
Adobe PDF
|
1.46 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2936872