Classical simulation of Noisy Intermediate Scale Quantum computers is a crucial task for testing the expected performance of real hardware. The standard approach, based on solving Schrödinger and Lindblad equations, is demanding when scaling the number of qubits in terms of both execution time and memory. In this article, attempts in defining compact models for the simulation of quantum hardware are proposed, ensuring results close to those obtained with standard formalism. Molecular Nuclear Magnetic Resonance quantum hardware is the target technology, where three non-ideality phenomena—common to other quantum technologies—are taken into account: decoherence, off-resonance qubit evolution, and undesired qubit-qubit residual interaction. A model for each non-ideality phenomenon is embedded into a MATLAB simulation infrastructure of noisy quantum computers. The accuracy of the models is tested on a benchmark of quantum circuits, in the expected operating ranges of quantum hardware. The corresponding outcomes are compared with those obtained via numeric integration of the Schrödinger equation and the Qiskit’s QASMSimulator. The achieved results give evidence that this work is a step forward towards the definition of compact models able to provide fast results close to those obtained with the traditional physical simulation strategies, thus paving the way for their integration into a classical simulator of quantum computers.

Towards Compact Modeling of Noisy Quantum Computers: A Molecular-Spin-Qubit Case of Study / Simoni, Mario; Cirillo, Giovanni Amedeo; Turvani, Giovanna; Graziano, Mariagrazia; Zamboni, Maurizio. - In: ACM JOURNAL ON EMERGING TECHNOLOGIES IN COMPUTING SYSTEMS. - ISSN 1550-4832. - ELETTRONICO. - 18:1(2022), pp. 1-26. [10.1145/3474223]

Towards Compact Modeling of Noisy Quantum Computers: A Molecular-Spin-Qubit Case of Study

Simoni, Mario;Cirillo, Giovanni Amedeo;Turvani, Giovanna;Graziano, Mariagrazia;Zamboni, Maurizio
2022

Abstract

Classical simulation of Noisy Intermediate Scale Quantum computers is a crucial task for testing the expected performance of real hardware. The standard approach, based on solving Schrödinger and Lindblad equations, is demanding when scaling the number of qubits in terms of both execution time and memory. In this article, attempts in defining compact models for the simulation of quantum hardware are proposed, ensuring results close to those obtained with standard formalism. Molecular Nuclear Magnetic Resonance quantum hardware is the target technology, where three non-ideality phenomena—common to other quantum technologies—are taken into account: decoherence, off-resonance qubit evolution, and undesired qubit-qubit residual interaction. A model for each non-ideality phenomenon is embedded into a MATLAB simulation infrastructure of noisy quantum computers. The accuracy of the models is tested on a benchmark of quantum circuits, in the expected operating ranges of quantum hardware. The corresponding outcomes are compared with those obtained via numeric integration of the Schrödinger equation and the Qiskit’s QASMSimulator. The achieved results give evidence that this work is a step forward towards the definition of compact models able to provide fast results close to those obtained with the traditional physical simulation strategies, thus paving the way for their integration into a classical simulator of quantum computers.
File in questo prodotto:
File Dimensione Formato  
3474223.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 957.56 kB
Formato Adobe PDF
957.56 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Turvani-Towards.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 1.46 MB
Formato Adobe PDF
1.46 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2930652