We prove a radial maximal function characterisation of the local atomic Hardy space h1(M) on a Riemannian manifold M with positive injectivity radius and Ricci curvature bounded from below. As a consequence, we show that an integrable function belongs to h1(M) if and only if either its local heat maximal function or its local Poisson maximal function is integrable. A key ingredient is a decomposition of Hölder cut-offs in terms of an appropriate class of approximations of the identity, which we obtain on arbitrary Ahlfors-regular metric measure spaces and generalises a previous result of A. Uchiyama.

Maximal characterisation of local Hardy spaces on locally doubling manifolds / Martini, A.; Meda, S.; Vallarino, M.. - In: MATHEMATISCHE ZEITSCHRIFT. - ISSN 0025-5874. - STAMPA. - 300:(2022), pp. 1705-1739. [10.1007/s00209-021-02856-x]

Maximal characterisation of local Hardy spaces on locally doubling manifolds

Martini A.;Vallarino M.
2022

Abstract

We prove a radial maximal function characterisation of the local atomic Hardy space h1(M) on a Riemannian manifold M with positive injectivity radius and Ricci curvature bounded from below. As a consequence, we show that an integrable function belongs to h1(M) if and only if either its local heat maximal function or its local Poisson maximal function is integrable. A key ingredient is a decomposition of Hölder cut-offs in terms of an appropriate class of approximations of the identity, which we obtain on arbitrary Ahlfors-regular metric measure spaces and generalises a previous result of A. Uchiyama.
File in questo prodotto:
File Dimensione Formato  
MMV-2022_MathZ.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 552.68 kB
Formato Adobe PDF
552.68 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2926192