Social media such as Twitter are a valuable source of information due to their diffusion among citizens and to their speed in sharing data worldwide. However, it is challenging to automatically extract information from such data, given the huge amount of useless content. We propose a multilingual tool that automatically categorizes tweets according to their information content. To achieve real-time classification while supporting any language, we apply a deep learning classifier, using multilingual word embeddings. This allows our solution to be trained on one language and to apply it to any other language via zero-shot inference achieving acceptable performance loss.
Multilingual Text Classification from Twitter during Emergencies / Piscitelli, Sara; Arnaudo, Edoardo; Rossi, Claudio. - ELETTRONICO. - 2021-:(2021), pp. 1-6. (Intervento presentato al convegno 2021 IEEE International Conference on Consumer Electronics, ICCE 2021 tenutosi a Las Vegas (USA) nel 2021) [10.1109/ICCE50685.2021.9427581].
Multilingual Text Classification from Twitter during Emergencies
Arnaudo, Edoardo;
2021
Abstract
Social media such as Twitter are a valuable source of information due to their diffusion among citizens and to their speed in sharing data worldwide. However, it is challenging to automatically extract information from such data, given the huge amount of useless content. We propose a multilingual tool that automatically categorizes tweets according to their information content. To achieve real-time classification while supporting any language, we apply a deep learning classifier, using multilingual word embeddings. This allows our solution to be trained on one language and to apply it to any other language via zero-shot inference achieving acceptable performance loss.File | Dimensione | Formato | |
---|---|---|---|
Multilingual_Text_Classification_from_Twitter_during_Emergencies.pdf
accesso riservato
Descrizione: Articolo principale
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.36 MB
Formato
Adobe PDF
|
1.36 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1570686692.pdf
accesso aperto
Descrizione: Articolo principale, (author's accepted manucript)
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Creative commons
Dimensione
174.27 kB
Formato
Adobe PDF
|
174.27 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2924772