We present DivExplorer, a tool that enables users to explore datasets and find subgroups of data for which a classifier behaves in an anomalous manner. These subgroups, denoted as divergent subgroups, may exhibit, for example, higher-than-normal false positive or negative rates. DivExplorer can be used to analyze and debug classifiers. If the data has ethical or social implications, DivExplorer can be also used to identify bias in classifiers.
How Divergent Is Your Data? / Pastor, Eliana; Gavgavian, Andrew; Baralis, Elena; de Alfaro, Luca. - ELETTRONICO. - 14:(2021), pp. 2835-2838. (Intervento presentato al convegno 47th International Conference on Very Large Data Bases) [10.14778/3476311.3476357].
How Divergent Is Your Data?
Pastor, Eliana;Baralis, Elena;
2021
Abstract
We present DivExplorer, a tool that enables users to explore datasets and find subgroups of data for which a classifier behaves in an anomalous manner. These subgroups, denoted as divergent subgroups, may exhibit, for example, higher-than-normal false positive or negative rates. DivExplorer can be used to analyze and debug classifiers. If the data has ethical or social implications, DivExplorer can be also used to identify bias in classifiers.| File | Dimensione | Formato | |
|---|---|---|---|
| p2835-pastor.pdf accesso aperto 
											Descrizione: Articolo principale (post-print referato)
										 
											Tipologia:
											2a Post-print versione editoriale / Version of Record
										 
											Licenza:
											
											
												Creative commons
												
												
													
													
													
												
												
											
										 
										Dimensione
										572.71 kB
									 
										Formato
										Adobe PDF
									 | 572.71 kB | Adobe PDF | Visualizza/Apri | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2923192
			
		
	
	
	
			      	