In domain generalization the target domain is not known at training time. We show that a style transfer based data augmentation strategy can be implemented easily and outperforms the current state of the art domain generalization methods. Moreover, we observe that those methods, even if combined with the described data augmentation, do not take advantage of it, indicating the need of new generalization solutions.
Domain Generalization vs Data Augmentation: An Unbiased Perspective / Cappio Borlino, Francesco; D’Innocente, Antonio; Tommasi, Tatiana. - ELETTRONICO. - 12535:(2020), pp. 726-730. (Intervento presentato al convegno 16th European Conference on Computer Vision, ECCV 2020 nel 23-28 August, 2020) [10.1007/978-3-030-66415-2_50].
Domain Generalization vs Data Augmentation: An Unbiased Perspective
Cappio Borlino, Francesco;D’Innocente, Antonio;Tommasi, Tatiana
2020
Abstract
In domain generalization the target domain is not known at training time. We show that a style transfer based data augmentation strategy can be implemented easily and outperforms the current state of the art domain generalization methods. Moreover, we observe that those methods, even if combined with the described data augmentation, do not take advantage of it, indicating the need of new generalization solutions.File | Dimensione | Formato | |
---|---|---|---|
ECCV_TASKCV_2020.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
179.99 kB
Formato
Adobe PDF
|
179.99 kB | Adobe PDF | Visualizza/Apri |
DomainGeneralizationVsDataAugm.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
177.28 kB
Formato
Adobe PDF
|
177.28 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2922134