In domain generalization the target domain is not known at training time. We show that a style transfer based data augmentation strategy can be implemented easily and outperforms the current state of the art domain generalization methods. Moreover, we observe that those methods, even if combined with the described data augmentation, do not take advantage of it, indicating the need of new generalization solutions.

Domain Generalization vs Data Augmentation: An Unbiased Perspective / Cappio Borlino, Francesco; D’Innocente, Antonio; Tommasi, Tatiana. - ELETTRONICO. - 12535:(2020), pp. 726-730. (Intervento presentato al convegno 16th European Conference on Computer Vision, ECCV 2020 nel 23-28 August, 2020) [10.1007/978-3-030-66415-2_50].

Domain Generalization vs Data Augmentation: An Unbiased Perspective

Cappio Borlino, Francesco;D’Innocente, Antonio;Tommasi, Tatiana
2020

Abstract

In domain generalization the target domain is not known at training time. We show that a style transfer based data augmentation strategy can be implemented easily and outperforms the current state of the art domain generalization methods. Moreover, we observe that those methods, even if combined with the described data augmentation, do not take advantage of it, indicating the need of new generalization solutions.
2020
File in questo prodotto:
File Dimensione Formato  
ECCV_TASKCV_2020.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 179.99 kB
Formato Adobe PDF
179.99 kB Adobe PDF Visualizza/Apri
DomainGeneralizationVsDataAugm.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 177.28 kB
Formato Adobe PDF
177.28 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2922134