Skeleton-based human action recognition has achieved a great interest in recent years, as skeleton data has been demonstrated to be robust to illumination changes, body scales, dynamic camera views, and complex background. Nevertheless, an effective encoding of the latent information underlying the 3D skeleton is still an open problem. In this work, we propose a novel Spatial-Temporal Transformer network (ST-TR) which models dependencies between joints using the Transformer self-attention operator. In our ST-TR model, a Spatial Self-Attention module (SSA) is used to understand intra-frame interactions between different body parts, and a Temporal Self-Attention module (TSA) to model inter-frame correlations. The two are combined in a two-stream network which outperforms state-of-the-art models using the same input data on both NTU-RGB+D 60 and NTU-RGB+D 120.
Spatial Temporal Transformer Network for Skeleton-Based Action Recognition / Plizzari, C.; Cannici, M.; Matteucci, M.. - ELETTRONICO. - 12663:(2021), pp. 694-701. (Intervento presentato al convegno 25th International Conference on Pattern Recognition Workshops, ICPR 2020 tenutosi a ita nel 2021) [10.1007/978-3-030-68796-0_50].
Spatial Temporal Transformer Network for Skeleton-Based Action Recognition
Plizzari C.;
2021
Abstract
Skeleton-based human action recognition has achieved a great interest in recent years, as skeleton data has been demonstrated to be robust to illumination changes, body scales, dynamic camera views, and complex background. Nevertheless, an effective encoding of the latent information underlying the 3D skeleton is still an open problem. In this work, we propose a novel Spatial-Temporal Transformer network (ST-TR) which models dependencies between joints using the Transformer self-attention operator. In our ST-TR model, a Spatial Self-Attention module (SSA) is used to understand intra-frame interactions between different body parts, and a Temporal Self-Attention module (TSA) to model inter-frame correlations. The two are combined in a two-stream network which outperforms state-of-the-art models using the same input data on both NTU-RGB+D 60 and NTU-RGB+D 120.File | Dimensione | Formato | |
---|---|---|---|
Workshop_FBE_paper.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
609.42 kB
Formato
Adobe PDF
|
609.42 kB | Adobe PDF | Visualizza/Apri |
Plizzari2021_Chapter_SpatialTemporalTransformerNetw.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
368.29 kB
Formato
Adobe PDF
|
368.29 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2922032