Edge computing technologies have improved delays and privacy of several applications, including in medical imaging and eHealth. In this paper, we consider ultrasound technology and echocardiology (echo) and empower it with edge computing. Despite the many advances that ultrasound technology has seen recently, e.g., it is possible to perform echo scans using wireless ultrasound probes, the use of Artificial Intelligence (AI) techniques is becoming a necessity, for faster and more accurate echo diagnosis (not limited to heart diseases). While a few proprietary solutions exist that embed AI within echo devices, none of them uses resource-intensive tasks on handheld devices, and none of them is open-source. To this end, we propose EdgeEcho, an architecture that captures ultrasound data originated from handheld ultrasound probes and tags it using semantic segmentation performed on edge cloud. Our prototype focuses on optimizing the management of edge resources to address the specific requirements of echocardiology and the challenges of serving AI algorithms responsively. As a use case, we focus on a ventricular volume detection operation. Our performance evaluation results show that EdgeEcho can support multiple parallel medical video processing streaming sessions for continuing medical education, demonstrating a promising edge computing application with life-saving potential.
EdgeEcho: An Architecture for Echocardiology at the Edge / Khalid, Aman; Esposito, Flavio; Sacco, Alessio; Smart, Steven C.. - ELETTRONICO. - (2021), pp. 412-416. (Intervento presentato al convegno 2021 17th International Conference on Network and Service Management (CNSM) tenutosi a Izmir, Turkey nel 25-29 October 2021) [10.23919/CNSM52442.2021.9615595].
EdgeEcho: An Architecture for Echocardiology at the Edge
Alessio Sacco;
2021
Abstract
Edge computing technologies have improved delays and privacy of several applications, including in medical imaging and eHealth. In this paper, we consider ultrasound technology and echocardiology (echo) and empower it with edge computing. Despite the many advances that ultrasound technology has seen recently, e.g., it is possible to perform echo scans using wireless ultrasound probes, the use of Artificial Intelligence (AI) techniques is becoming a necessity, for faster and more accurate echo diagnosis (not limited to heart diseases). While a few proprietary solutions exist that embed AI within echo devices, none of them uses resource-intensive tasks on handheld devices, and none of them is open-source. To this end, we propose EdgeEcho, an architecture that captures ultrasound data originated from handheld ultrasound probes and tags it using semantic segmentation performed on edge cloud. Our prototype focuses on optimizing the management of edge resources to address the specific requirements of echocardiology and the challenges of serving AI algorithms responsively. As a use case, we focus on a ventricular volume detection operation. Our performance evaluation results show that EdgeEcho can support multiple parallel medical video processing streaming sessions for continuing medical education, demonstrating a promising edge computing application with life-saving potential.File | Dimensione | Formato | |
---|---|---|---|
EdgeEcho_An_Architecture_for_Echocardiology_at_the_Edge.pdf
non disponibili
Descrizione: Articolo principale
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
973.47 kB
Formato
Adobe PDF
|
973.47 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
EdgeECHO - final short.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
472.29 kB
Formato
Adobe PDF
|
472.29 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2921134