The structural analysis of ultra-lightweight flexible shells and membranes may require the adoption of complex nonlinear strain-displacement relations. These may be approximated and simplified in some circumstances, e.g., in the case of moderately large displacements and rotations, in some others may be not. In this paper, the effectiveness of various geometrically nonlinear strain approximations such as the von Krmn strains is investigated by making use of refined shell formulations based on the Carrera Unified Formulation (CUF). Furthermore, geometrical nonlinear equations are written in a total Lagrangian framework and solved with an opportune Newton-Raphson method. Test cases include the study of shells subjected to pinched loadings, combined flexure and compression, and post-buckling including snap-through problems. It is demonstrated that full geometrically nonlinear analysis accounting for full Green-Lagrange strains shall be performed whenever displacements are higher than the order of magnitude of the thickness and if compressive loads are applied.

Effect of different geometrically nonlinear strain measures on the static nonlinear response of isotropic and composite shells with constant curvature / Pagani, A.; Azzara, R.; Wu, B.; Carrera, E.. - In: INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES. - ISSN 0020-7403. - STAMPA. - 209:(2021), p. 106713. [10.1016/j.ijmecsci.2021.106713]

Effect of different geometrically nonlinear strain measures on the static nonlinear response of isotropic and composite shells with constant curvature

Pagani, A.;Azzara, R.;Wu, B.;Carrera, E.
2021

Abstract

The structural analysis of ultra-lightweight flexible shells and membranes may require the adoption of complex nonlinear strain-displacement relations. These may be approximated and simplified in some circumstances, e.g., in the case of moderately large displacements and rotations, in some others may be not. In this paper, the effectiveness of various geometrically nonlinear strain approximations such as the von Krmn strains is investigated by making use of refined shell formulations based on the Carrera Unified Formulation (CUF). Furthermore, geometrical nonlinear equations are written in a total Lagrangian framework and solved with an opportune Newton-Raphson method. Test cases include the study of shells subjected to pinched loadings, combined flexure and compression, and post-buckling including snap-through problems. It is demonstrated that full geometrically nonlinear analysis accounting for full Green-Lagrange strains shall be performed whenever displacements are higher than the order of magnitude of the thickness and if compressive loads are applied.
File in questo prodotto:
File Dimensione Formato  
Pagani et al. - International Journal of Mechanical Sciences - 2021.pdf

non disponibili

Descrizione: PDF editoriale ad accesso ristretto
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.32 MB
Formato Adobe PDF
2.32 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Shell_NL_terms.pdf

accesso aperto

Descrizione: preprint
Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 1.23 MB
Formato Adobe PDF
1.23 MB Adobe PDF Visualizza/Apri
UNM.pdf

Open Access dal 04/08/2023

Descrizione: postprint dell'autore
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 1.25 MB
Formato Adobe PDF
1.25 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2917552