The detailed documentation of degradation constitutes a fundamental step for weathering diagnosis and, consequently, for successful planning and implementation of conservation measures for stone heritage. Mapping the surface patterns of stone is a non-destructive procedure critical for the qualitative and quantitative rating of the preservation state. Furthermore, mapping is employed for the annotation of weathering categories and the calculation of damage indexes. However, it is often a time-consuming task, which is conducted manually. Thus, practical methods need to be developed to automatize degradation mapping without significantly increasing the diagnostic process’s cost for conservation specialists. This work aims to develop and evaluate a methodology based on affordable close-range sensing techniques, image processing, and free and open source software for the spatial description, annotation, qualitative analysis, and rating of stone weatheringinduced damage. Low-cost cameras were used to record images in the visible, near-infrared, and thermal-infrared spectra. The application of photogrammetric techniques allowed for the generation of the necessary background, that was elaborated to extract thematic information. Digital image processing of the spatially and radiometrically corrected images and image mosaics enabled the straightforward transition to a spatial information environment simplifying the development of degradation maps. The digital thematic maps facilitated the rating of stone damage and the extraction of useful statistical data.

Combining Multiband Imaging, Photogrammetric Techniques, and FOSS GIS for Affordable Degradation Mapping of Stone Monuments / Rinaudo, Fulvio; Adamopoulos, Efsthatios. - In: BUILDINGS. - ISSN 2075-5309. - ELETTRONICO. - 11:7(2021), pp. 304-324. [10.3390/buildings11070304]

Combining Multiband Imaging, Photogrammetric Techniques, and FOSS GIS for Affordable Degradation Mapping of Stone Monuments

Rinaudo, Fulvio;
2021

Abstract

The detailed documentation of degradation constitutes a fundamental step for weathering diagnosis and, consequently, for successful planning and implementation of conservation measures for stone heritage. Mapping the surface patterns of stone is a non-destructive procedure critical for the qualitative and quantitative rating of the preservation state. Furthermore, mapping is employed for the annotation of weathering categories and the calculation of damage indexes. However, it is often a time-consuming task, which is conducted manually. Thus, practical methods need to be developed to automatize degradation mapping without significantly increasing the diagnostic process’s cost for conservation specialists. This work aims to develop and evaluate a methodology based on affordable close-range sensing techniques, image processing, and free and open source software for the spatial description, annotation, qualitative analysis, and rating of stone weatheringinduced damage. Low-cost cameras were used to record images in the visible, near-infrared, and thermal-infrared spectra. The application of photogrammetric techniques allowed for the generation of the necessary background, that was elaborated to extract thematic information. Digital image processing of the spatially and radiometrically corrected images and image mosaics enabled the straightforward transition to a spatial information environment simplifying the development of degradation maps. The digital thematic maps facilitated the rating of stone damage and the extraction of useful statistical data.
2021
File in questo prodotto:
File Dimensione Formato  
buildings-11-00304.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 1.24 MB
Formato Adobe PDF
1.24 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2912694