The use of RPAS for civil purposes is spreading across Europe and worldwide; Aviation Authorities are working to layout regulations to assure a safe and secure integration of RPAS with manned aircraft across both controlled and uncontrolled (below 500 Feet of altitude) airspace. Following the identification of a selection of safety risks potentially associated to RPAS Specific Category of operations, an original strategy of risks mitigation focused on rule-based ‘Expert Systems’, has been conceived and it is discussed in this work. The article recalls the main components of rule-based ‘Expert Systems’ that is the knowledge basis and the rules to instruct the ‘Expert system’. Then the work describes the implementation of the rules as statements derived from a safety risk matrix associated to RPAS capable of performing Specific Category operations within the U-space. Finally, the idea of integrating the ‘Expert System’ as a software module within RPAS functional architecture is presented and discussed. Such solution is deemed to be a valuable novelty for future implementations of advanced RPAS autopilots capable of recognizing and solving in flight/on ground operational safety risks in such a way to speed up the integration of RPAS into not segregated airspace and their market development.
Integration of rule-based ‘Expert Systems’ on RPAS capable of specific category operations within the U-space: An original mitigation strategy for operational safety risks / Bonfante, F.; Dalla Vedova, M. D. L.; Maggiore, P.; Grimaccia, F.; Filippone, E.. - In: IOP CONFERENCE SERIES: MATERIALS SCIENCE AND ENGINEERING. - ISSN 1757-8981. - ELETTRONICO. - 1024:(2021), p. 012094. (Intervento presentato al convegno 10th EASN International Conference on Innovation in Aviation and Space to the Satisfaction of the European Citizens, EASN 2020 nel 2020) [10.1088/1757-899X/1024/1/012094].
Integration of rule-based ‘Expert Systems’ on RPAS capable of specific category operations within the U-space: An original mitigation strategy for operational safety risks
Bonfante F.;Dalla Vedova M. D. L.;Maggiore P.;
2021
Abstract
The use of RPAS for civil purposes is spreading across Europe and worldwide; Aviation Authorities are working to layout regulations to assure a safe and secure integration of RPAS with manned aircraft across both controlled and uncontrolled (below 500 Feet of altitude) airspace. Following the identification of a selection of safety risks potentially associated to RPAS Specific Category of operations, an original strategy of risks mitigation focused on rule-based ‘Expert Systems’, has been conceived and it is discussed in this work. The article recalls the main components of rule-based ‘Expert Systems’ that is the knowledge basis and the rules to instruct the ‘Expert system’. Then the work describes the implementation of the rules as statements derived from a safety risk matrix associated to RPAS capable of performing Specific Category operations within the U-space. Finally, the idea of integrating the ‘Expert System’ as a software module within RPAS functional architecture is presented and discussed. Such solution is deemed to be a valuable novelty for future implementations of advanced RPAS autopilots capable of recognizing and solving in flight/on ground operational safety risks in such a way to speed up the integration of RPAS into not segregated airspace and their market development.| File | Dimensione | Formato | |
|---|---|---|---|
|
Bonfante_2021_IOP_Conf._Ser.__Mater._Sci._Eng._1024_012094.pdf
accesso aperto
Descrizione: Paper - Final Version
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
1.6 MB
Formato
Adobe PDF
|
1.6 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2912642
