In recent years there has been a significant increase in the production of electric vehicles (EVs), in the global strive to reduce polluting gases produced by conventional fossil-fuel driven vehicles. Therefore, many optimization algorithms have been proposed for EV mobility and the charging of battery packs in the stations connected to power grids. However, there are situations in which experimental results are not sufficient, and simulations are needed. In this work, we address the effects of the charge demands of an EV fleet on the grid by considering the attitude of EV drivers, and especially their range anxiety. This influences their decision of when to recharge the battery pack. To this end, an agent-based model has been developed for the simulation of a power grid considering different scenarios based mainly on the state of charge (SOC) of battery packs at the time of the charging requests of EVs at service stations. The results indicate that in general a high battery SOC at the beginning of charging increases the probability of reaching higher power peaks on the grid.
Forecasting the grid power demand of charging stations from EV drivers’ attitude / Bocca, Alberto; Macii, Alberto; Macii, Enrico. - ELETTRONICO. - (2021), pp. 1868-1873. (Intervento presentato al convegno 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC) nel 12-16 July 2021) [10.1109/COMPSAC51774.2021.00282].
Forecasting the grid power demand of charging stations from EV drivers’ attitude
Bocca Alberto;Macii Alberto;Macii Enrico
2021
Abstract
In recent years there has been a significant increase in the production of electric vehicles (EVs), in the global strive to reduce polluting gases produced by conventional fossil-fuel driven vehicles. Therefore, many optimization algorithms have been proposed for EV mobility and the charging of battery packs in the stations connected to power grids. However, there are situations in which experimental results are not sufficient, and simulations are needed. In this work, we address the effects of the charge demands of an EV fleet on the grid by considering the attitude of EV drivers, and especially their range anxiety. This influences their decision of when to recharge the battery pack. To this end, an agent-based model has been developed for the simulation of a power grid considering different scenarios based mainly on the state of charge (SOC) of battery packs at the time of the charging requests of EVs at service stations. The results indicate that in general a high battery SOC at the beginning of charging increases the probability of reaching higher power peaks on the grid.| File | Dimensione | Formato | |
|---|---|---|---|
| 246300b868.pdf accesso riservato 
											Descrizione: Articolo principale
										 
											Tipologia:
											2a Post-print versione editoriale / Version of Record
										 
											Licenza:
											
											
												Non Pubblico - Accesso privato/ristretto
												
												
												
											
										 
										Dimensione
										1.86 MB
									 
										Formato
										Adobe PDF
									 | 1.86 MB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
| main.pdf accesso aperto 
											Tipologia:
											2. Post-print / Author's Accepted Manuscript
										 
											Licenza:
											
											
												Pubblico - Tutti i diritti riservati
												
												
												
											
										 
										Dimensione
										1.85 MB
									 
										Formato
										Adobe PDF
									 | 1.85 MB | Adobe PDF | Visualizza/Apri | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2912628
			
		
	
	
	
			      	