We show a remarkable property of the CM-wild variety P1×P2, namely that the only ACM sheaves moving in positive-dimensional families are Ulrich bundles. A completeclassification of the non-Ulrich range is given.We prove that this feature is unique in the sense that any other ACM reduced closedsubscheme X⊂P^N of dimension n>1 belongs to the well-known list of CM-finite orCM-tame varieties, or else it remains CM-wild upon removing Ulrich sheaves.

Non-Ulrich representation type / Faenzi, Daniele; Malaspina, Francesco; Sanna, Giangiacomo. - In: ALGEBRAIC GEOMETRY. - ISSN 2214-2584. - STAMPA. - 8:4(2021), pp. 405-429. [10.14231/AG-2021-012]

Non-Ulrich representation type

Malaspina, Francesco;
2021

Abstract

We show a remarkable property of the CM-wild variety P1×P2, namely that the only ACM sheaves moving in positive-dimensional families are Ulrich bundles. A completeclassification of the non-Ulrich range is given.We prove that this feature is unique in the sense that any other ACM reduced closedsubscheme X⊂P^N of dimension n>1 belongs to the well-known list of CM-finite orCM-tame varieties, or else it remains CM-wild upon removing Ulrich sheaves.
2021
File in questo prodotto:
File Dimensione Formato  
AG-Non Ulrich.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 445.11 kB
Formato Adobe PDF
445.11 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2912340