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Non-Ulrich representation type

Daniele Faenzi, Francesco Malaspina and Giangiacomo Sanna

Abstract

We show a remarkable property of the CM-wild variety P1×P2, namely that the only
ACM sheaves moving in positive-dimensional families are Ulrich bundles. A complete
classification of the non-Ulrich range is given.

We prove that this feature is unique in the sense that any other ACM reduced closed
subscheme X ⊂ PN of dimension n > 1 belongs to the well-known list of CM-finite or
CM-tame varieties, or else it remains CM-wild upon removing Ulrich sheaves.

1. Introduction

Given a reduced closed subscheme X ⊂ PN of dimension n > 0 over an algebraically closed
field k, we say that X is arithmetically Cohen–Macaulay (ACM) if its homogeneous coordinate
algebra k[X] is a graded Cohen–Macaulay ring. A coherent sheaf E on X is ACM if the module E
of global sections of E is a maximal Cohen–Macaulay (MCM) module over k[X].

A few ACM varieties X support only finitely many isomorphism classes of indecomposable
ACM sheaves (up to twist); in this case, X is of finite CM representation type, or CM-finite.
These varieties are classified in [EH88] and turn out to be projective spaces, smooth quadrics,
rational normal curves, the Veronese surface in P5 and the rational surface scroll of degree 3
in P4. All ACM subvarieties X besides these cases are CM-infinite. In a few cases, X supports
only discrete families of non-isomorphic indecomposable ACM sheaves. This happens for quadrics
of corank 1 with char(k) 6= 2 (see [BGS87, Section 4]) and t-chains of rational curves, that is,
At-configurations of smooth rational projective curves, for t > 2 (see [DG01]). We call these
varieties CM-discrete (although some authors call these varieties CM-finite as well).

Some CM-non-discrete varieties support at most 1-dimensional families of isomorphism classes
of indecomposable ACM sheaves. In dimension 1, this happens when X is an elliptic curve
(by [Ati57]) or, in view of [DG01], an Ãt-configuration of smooth rational projective curves for
t > 2 or a rational projective curve with a single simple node (which one may think of as an
Ã1-configuration). These curves are called cycles of rational curves. In higher dimension, this
happens when X is a rational surface scroll of degree 4 in P5; see [FM17]. A variety X with this
property is of tame CM-type.
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As opposed to the previous kinds of varieties, whose CM-categories are under control, one
introduces CM-wild varieties. In terms of representation theory of algebras, X is of CM-wild type
if the category of finitely generated modules over any finitely generated associative k-algebra Λ
admits a representation embedding into the category of graded MCM modules over k[X]. This
means that there is an exact functor Φ that carries finitely generated Λ-modules to graded
MCM k[X]-modules such that given finitely generated Λ-modules M and M ′, an isomorphism
Φ(M) ' Φ(M ′) implies M ' M ′ and Φ(M) is indecomposable whenever M is. We refer, for
example, to [SS07, Chapter XIX] and [DG01] for more precise definitions of the tame and wild
representation types of algebras.

The category of ACM sheaves over a CM-wild variety is at least as rich as the category of
finitely generated modules of an arbitrary finitely generated associative algebra. It is clear that
if X is CM-wild in the algebraic sense, then X supports families of pairwise non-isomorphic
indecomposable ACM sheaves of arbitrarily large dimension, so X is CM-wild in the geometric
sense.

The main result of [FP15] asserts that all ACM integral closed subschemes in PN which are
not in the list of CM-finite, CM-discrete or CM-tame varieties mentioned above are CM-wild in
the algebraic sense.

Among ACM sheaves, a special role is played by Ulrich sheaves. These are characterized
by the linearity of the minimal graded free resolution over the polynomial ring of their module
of global sections. Ulrich sheaves, originally studied for computing Chow forms, conjecturally
exist over any variety (we refer to [ESW03]). They are important for Boij–Söderberg theory
(cf. [ES09, SE10]) and for the determination of the representation type of varieties (see [FP15]).

Over many smooth algebraic varieties, heuristics about Ulrich sheaves point out that, among
ACM sheaves of a fixed rank, they frequently move in the largest families; that is, the dimen-
sion of their deformation space is maximal among such sheaves. For instance, Fano threefolds
of Picard number 1 and index at least 2 admit ACM sheaves of rank 2; most of them are
semistable, and their moduli space has the largest dimension precisely in the case of Ulrich
sheaves (see [BF11]). This also happens on some Fano threefolds of higher Picard rank (we refer,
for example, to [CFM18] and references therein). The above considerations motivate the belief
that when X is CM-wild, there should exist families of pairwise non-isomorphic indecomposable
Ulrich sheaves of arbitrarily large dimension (so X should be Ulrich wild). Algebraically, it should
be possible to construct the representation embedding Φ in such a way that it lands into the
category of Ulrich (also known as maximally generated) MCM modules.

The present paper is devoted to further studying the impact of Ulrich sheaves on the rep-
resentation type of varieties, mostly smooth ones. Namely, taking for granted the slogan that
Ulrich sheaves should move in the largest families, we ask what happens if we exclude them: does
the representation type of X change? More precisely, can X be downgraded to a CM-finite or
CM-tame variety if we require that the image of the representation embedding Φ contain only
finitely many Ulrich modules for any given rank, so that X is algebraically non-Ulrich CM-wild?
In particular, are there unbounded families of indecomposable ACM sheaves on X which are not
Ulrich?

Our first main contribution is that the answer to this question is negative, except for the two
smooth CM-tame surfaces and for a single CM-wild variety, which is P1 ×P2. More specifically,
after excluding Ulrich sheaves, the two rational scrolls of degree 4 and P1 ×P2 become of finite
CM representation type, while all other varieties keep their representation type unchanged. This
holds for all reduced ACM varieties of dimension n > 1 when char(k) 6= 2.
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Theorem A. Let X ⊂ PN be a reduced closed non-degenerate ACM subscheme of dimension
n > 1. Then X is algebraically non-Ulrich CM-wild unless X is

i) a linear space,

ii) a quadric hypersurface of corank at most 1,

iii) an At-configuration of smooth rational curves, for some t > 1,

iv) an Ãt-configuration of smooth rational curves, for t > 1, or an elliptic curve,

v) a surface scroll of degree d in Pd+1 with d ∈ {3, 4},
vi) the Segre product P1 × P2 in P5.

In cases v) and vi), the subscheme X supports only finitely many non-Ulrich ACM sheaves.

For the second theorem, we use suitably chosen sets of generators of the derived category of
coherent sheaves over projective bundles over P1 to obtain a complete classification of the ACM
indecomposable bundles (Ulrich or not) over P1 × P2 and over quartic scrolls. This second case
is actually a direct extrapolation from [FM17], so the main point is to treat P1 ×P2, embedded
as a degree 3 submanifold of P5 via the Segre product. To state the result, let us introduce some
notation. Consider the projection π from X = P1 ×P2 to P1, and put F for the divisor class of
a fibre of π and L for the pull-back of the class of a line on P2. Set Ωπ for the cotangent bundle
of P2, pulled back to X.

Theorem B. Let F be an indecomposable ACM sheaf on P1 × P2; assume H0(F) = 0 and
H0(F(1)) 6= 0. Then F is

i) either an Ulrich bundle of the form

0→ OX(−F )⊕a → F → OX(F − L)⊕b → 0 for some a, b ∈ N , (1.1)

ii) or OX(−1) or OX(−L) or the Ulrich bundle Ωπ(L).

This has the following surprising corollaries.

Corollary C. Given a polynomial p ∈ Q[t], any non-empty moduli space of H-semistable ACM
sheaves on X with Hilbert polynomial p is a finite set of points.

Put c0 = 0, c1 = 1, ck+2 = 3ck+1 − ck and c−k = ck for all k > 0. The numbers ck are the
odd terms of the Fibonacci sequence.

Corollary D. For any k ∈ Z, there is a unique indecomposable sheaf Uk fitting into

0→ OX(−F )⊕ck−1 → Uk → OX(F − L)⊕ck → 0 .

The sheaves Uk are Ulrich and rigid and satisfy

U∨k ⊗ ωX(2) ' U1−k .

Up to a twist by OX(t), any rigid indecomposable ACM sheaf on X is isomorphic to OX , or to
OX(−L), or to Ωπ(L), or to Uk for some k.

The paper is organized as follows. We start by recalling some basic notions and preparing the
proof of our main results in Section 2, where we quickly sketch how to deal with the case of curves
by following the literature. In Section 3, we provide a result ensuring the existence of unbounded
families of ACM non-Ulrich sheaves under certain conditions; this is actually a slight modification
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of [FP15, Theorem A]. Sections 4 and 5 are devoted to the proof of Theorem A in dimension 2
and higher, with the exception of the statement concerning P1×P2. More specifically, Section 5
proves it for varieties of minimal degree (except for P1 × P2), that is, non-degenerate integral
varieties X ⊂ PN of dimension n > 2 and degree d = N − n+ 1, while Section 4 proves it when
d > N−n+1, the special case n = 2 being treated in Section 4.1, separately from the range n > 3
showing up in Section 4.2. Finally, in Section 6 we analyze ACM bundles on the exceptional case
mentioned above, namely the Segre product P1 ×P2 ⊂ P5. Theorem B is proved in Section 6.3;
cf. in particular Theorem 6.3. The two corollaries above are proved in Section 6.3.1.

2. Basic facts

Let k be a field. Given an integer N , set PN for the projective space of hyperplanes through the
origin of kN+1.

2.1 Notation and conventions

Let X ⊂ PN be a closed integral subscheme of dimension n. We assume throughout the paper
that X is non-degenerate; namely, there is no hyperplane of PN that contains X. The variety X
is equipped with the very ample line bundle OX(1) defined as the restriction of OPN (1) via the
embedding X ⊂ PN . We will write H for the divisor class of OX(1).

The coordinate ring R of PN is the graded polynomial algebra in N + 1 variables with
the standard grading, namely R = k[x0, . . . , xN ]. The homogeneous coordinate ring k[X] is
the graded algebra k[X] = R/IX , where IX is the homogeneous radical ideal of polynomials
vanishing on X.

The degree of X is computed via the Hilbert polynomial of IX . We will be denoted it by d.

2.2 Cohen–Macaulay and Ulrich conditions

Given a coherent sheaf E on X, the ith cohomology module of E is the k[X]-module

Hi
∗(E) =

⊕
k∈Z

Hi(X,E⊗ OX(k)) .

For i > 1, the k[X]-modules Hi
∗(E) are artinian.

Definition 2.1. A coherent sheaf E on X is called ACM, standing for arithmetically Cohen–
Macaulay, if E is locally Cohen–Macaulay on X and

Hi
∗(E) = 0 for i ∈ {1, . . . , n− 1} .

Equivalently, the minimal graded free resolution of the module of global sections E = H0
∗(E),

seen as an R-module, has length N − n.

A locally Cohen–Macaulay sheaf on a smooth scheme is locally free; we also call it a vector
bundle or simply a bundle.

The variety X itself is said to be ACM if X is projectively normal and OX is ACM. This is
equivalent to asking that k[X] be a graded Cohen–Macaulay ring, which in turn amounts to the
fact that the minimal graded free resolution of k[X] as R-module has length N −n. In this case,
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the line bundles OX(k) are ACM.

Definition 2.2. Let d be the degree of the embedded variety X ⊂ PN . For r > 0, a rank r
ACM sheaf E on X is said to be Ulrich if there is a t ∈ Z such that H0(X,E(t − 1)) = 0 and
h0(X,E(t)) = rd. We say that E is initialized by t (we omit “by t” if t = 0).

Given a coherent sheaf E on X, asking that E be initialized and Ulrich is tantamount to
requiring H∗(X,E(−j)) = 0 for all 1 6 j 6 n; cf. [ES09, Proposition 2.1].

Remark 2.3. We should warn the reader that the usual definition of Ulrich sheaf in the literature is
equivalent to our definition of initialized Ulrich sheaf. We adopted this slightly different definition
in order to work with sheaves which are Ulrich up to a twist.

2.3 Semistability

Let X ⊂ PN be a closed subscheme of dimension n > 0 embedded by the very ample divisor H.
Stability of sheaves on X will always mean Gieseker stability of pure n-dimensional sheaves with
respect to the divisor H.

The Hilbert polynomial of a coherent sheaf E on X, computed with respect to H, is denoted
by P (E, t). The rank of E is defined as the element r ∈ Q such that the leading coefficient of P (E, t)
equals rd/n!. For r 6= 0, we write p(E, t) := P (E, t)/r for the reduced Hilbert polynomial of E.

Given polynomials p, q ∈ Q[t], we write p � q if p(t) 6 q(t) for t � 0. A coherent sheaf E

of rank r 6= 0 is semistable if it is pure (that is, all its subsheaves have support of dimension n)
and for any non-zero subsheaf F ( E, we have p(F, t) � p(E, t). Stability is defined by strict
inequalities.

A coherent sheaf E on X is simple if HomX(E,E) is generated by idE.

2.4 Basic remarks on Theorem A

Here are some comments about Theorem A from the introduction. Again, we assume that
X ⊂ PN is an n-dimensional closed subscheme over a field k, with n > 1.

Remark 2.4. To obtain the CM-wildness of X, it suffices to find a representation embedding
of some algebra of wild representation type into the category of ACM sheaves on X (cf. for
instance [FP15, Section 1.2]). We will mostly take such an algebra to be the free k-algebra in
two generators or the path algebra of the Kronecker quiver with two vertices and three arrows.

Remark 2.5. In the setting of Theorem A (that is, X ⊂ PN is reduced, closed, non-degenerate,
ACM and k is algebraically closed), the restriction char(k) 6= 2 is only needed to deal with the
case of quadric hypersurfaces of corank 1, which is derived from [BGS87], so the result is also
valid in characteristic 2 except perhaps for this case. More information on MCM modules on
quadrics in characteristic 2 can be found in [BEH87].

Remark 2.6. The statement for curves in Theorem A is a consequence of [DG01]; cf. also [BDG01,
BBDG06]. It should be pointed out that the cohomological vanishing required for a sheaf to be
ACM plays no role in dimension 1, so the statement is really about locally Cohen–Macaulay
sheaves.
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More in detail, given a reduced connected projective curve X ⊂ PN of degree d over an
algebraically closed field k, in order to check that X is non-Ulrich CM-wild, it suffices to find
a representation embedding of some wild k-algebra into the category of vector bundles over X
in such a way that for any given rank r, the resulting rank r bundles E satisfy

H0(E(−H)) = 0 , 0 6= dim H0(E) 6= dr (2.1)

except for finitely many choices of E.

In turn, this is already the case for all vector bundles appearing in [BBDG06, Theorem 7]
if X has arithmetic genus g > 1. Indeed, such bundles have degree r, so (2.1) follows easily from
the Riemann–Roch theorem.

For curves of arithmetic genus g 6 1 which are not of type At or Ãt, the construction of [DG01]
provides bundles E whose pull-backs under the normalization π : X̃ → X decompose as a direct
sum ⊕ti=1Ei, where (X̃i | i = 1, . . . , t) is the set of irreducible components of X̃ and, for each
i ∈ {1, . . . , t}, the sheaf Ei is a vector bundle on X̃i. One checks that the degrees of the bundles
(Ei | i = 1, . . . , t) can be chosen in such a way that π∗(E) and hence E satisfy (2.1) by the
Riemann–Roch theorem.

In the same way, the freedom in the choice of deg(Ei)i allows us to define infinitely indecom-
posable vector bundles which are not isomorphic up to a twist over At-configurations for t > 2,
as well as 1-parameter family thereof over elliptic curves and Ãt-configurations for t > 1.

In view of the previous remark, in the proof of Theorem A, we will be allowed to assume that
the dimension n of X is at least 2.

3. Representation embeddings and non-Ulrich sheaves

Let X ⊂ PN be a non-degenerate closed subscheme of dimension n > 0 over a field k. We
propose here a criterion, based on classical ideas about extensions of sheaves and modules, for X
to be non-Ulrich CM-wild. Since this does not really depend on X being smooth or ACM, we
formulate it in a more general setting than what is actually needed to prove Theorem A. The
result is a slight modification of [FP15, Theorem A].

Theorem 3.1. Let A and B be simple semistable ACM sheaves such that p(B) ≺ p(A), and
assume dimk Ext1X(B,A) > 3. Then the following hold:

i) The subscheme X is CM-wild.

ii) If n > 2 and A and B are not Ulrich initialized by the same integer, then X is algebraically
non-Ulrich CM-wild.

iii) The same conclusion as in part ii) also holds for n = 1 if there is no t ∈ Z such that
H0(X,A(t)) = H1(X,B(t)) = 0.

Proof. We use the setting and notation of [FP15, Theorem A]. To be in position to apply that
result, we should verify that any non-zero morphism A → B is an isomorphism. But this is
obvious since p(B) ≺ p(A) and A and B are semistable, so any morphism A → B is actually
zero, so part i) is clear.

Therefore, X is algebraically CM-wild. Now, assume that no integer t turns A(t) and B(t)
into initialized Ulrich sheaves. Recall that, by construction, the sheaves appearing in the families
provided by [FP15, Theorem A] are extensions of copies of A and B. If a sheaf E is an extension
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of say a copies of A and b copies of B, it suffices to prove that E is actually non-Ulrich when a
and b are both non-zero.

To check this, in order to obtain a contradiction, we let t be an integer that initializes E as
an Ulrich sheaf, that is, such that H∗(X,E(t− j)) = 0 for all 1 6 j 6 n. Since A and B are ACM
by assumption, we have the vanishing Hi(X,A(t − j)) = Hi(X,B(t − j)) for 1 6 i 6 n − 1 and
for all j ∈ Z.

By definition, E fits into an exact sequence of the form

0→ A⊕a → E→ B⊕b → 0 ,

where we may assume a 6= 0 6= b. Therefore, from the vanishing Hi(X,E(t− j)) = 0, we deduce
H0(X,A(t− j)) = 0 = Hn(X,B(t− j)) for 1 6 j 6 n.

Now, if n > 2, then because A is ACM, the vanishing H1(X,A(t − j))) takes place for all
j ∈ Z, so we see that H0(X,E(t − j)) = 0 implies H0(X,B(t − j)) = 0 for 1 6 j 6 n. This
implies that B is Ulrich, initialized by t, and similarly we get that this holds true for A. But this
is excluded, and we conclude that part ii) holds.

With the same set-up, we can also prove part iii). Indeed, when X is a curve, a coherent
sheaf E is Ulrich if and only if there is a t ∈ Z such that Hi(X,E(t)) = 0 for all i, which implies
H0(X,A(t)) = 0 and H1(X,B(t)) = 0. But our assumption implies that there is no t ∈ Z such
that H0(X,A(t)) and H1(X,B(t)) vanish together, so E is not Ulrich.

4. Varieties of non-minimal degree

Let X ⊂ PN be a non-degenerate closed subscheme of dimension n over an algebraically closed
field k. Assume that X is reduced and ACM. Put d = deg(X).

We mentioned in Section 2.4 that in order to prove Theorem A, we can assume n > 2. In
this section, we would like to treat the case when X is not of minimal degree, which is to say
d > N − n+ 2.

We first look at the case (n, d) = (2, N), so X is a surface of quasi-minimal degree, which we
deal with in the next paragraph. The remaining cases are basically already in [FP15], up to the
result, proved in Section 4.2, that the cth syzygy of an ACM sheaf supported on a c-codimensional
linear section is an ACM sheaf which is never Ulrich when d > N − n+ 2.

4.1 Surfaces of quasi-minimal degree

For this subsection, X ⊂ PN is an ACM reduced closed surface of degree N , so X is of quasi-
minimal degree. It turns out that X is locally Gorenstein, namely ωX ' OX(−1); see [Mig98,
Corollary 4.1.5].

Let us first observe that if X is reducible, then X is non-Ulrich CM-wild. Indeed, in view
of [FP15, Section 7.1] and since n > 2, we are in position to apply [FP15, Theorem 5.2] and
show that X is CM-wild. However, the sheaves obtained in this way are not Ulrich. Indeed,
such a sheaf E appears as an extension of an ACM sheaf F1(q) on a first component X1 of X
for some q > 0, and of the structure sheaf of a second component X2 of X, and the resulting
sheaf E is not Ulrich for q � 0. So we may assume until the end of the subsection that X is
integral.
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4.1.1 Syzygies of Ulrich bundles. Let X be an integral ACM surface of quasi-minimal degree.
We first assume that X is not a cone. In view of [FP15, Section 7.4], there exist stable initialized
Ulrich bundles E1 and E2 of rank 2 on X and determinant OX(2) such that

HomX(Ei,Ei) = kidEi
for i ∈ {1, 2} ,

HomX(Ei,Ej) = 0 if {i, j} = {1, 2} ,
dim Ext1X(Ei,Ei) = 5 for i ∈ {1, 2} ,
dim Ext1X(Ei,Ej) = 4 if {i, j} = {1, 2} ,
ExtpX(Ei,Ej) = 0 for i, j ∈ {1, 2} and p > 2 .

(4.1)

Consider the evaluations of global sections for i ∈ {1, 2},

eEi
: H0(Ei)⊗ OX → Ei .

We define Ai = ker(eEi
)∨ for i ∈ {1, 2}.

Proposition 4.1. The sheaves A1 and A2 are simple, ACM vector bundles which are not Ulrich.
They satisfy

HomX(Ai,Ai) = kidAi
for i ∈ {1, 2} ,

HomX(Ai,Aj) = 0 if {i, j} = {1, 2} ,
dim Ext1X(Ai,Ai) = 5 for i ∈ {1, 2} ,
dim Ext1X(Ai,Aj) = 4 if {i, j} = {1, 2} ,
ExtpX(Ai,Aj) = 0 for i, j ∈ {1, 2} and p > 2 .

(4.2)

Proof. It is well known that the module of global sections of an initialized Ulrich bundle of rank r
over X is generated by Nr elements of degree 0. Therefore, the evaluation maps eEk

are surjective
for k ∈ {1, 2}, and the sheaves ker(eEk

) are locally free and ACM of rank 2(N − 1) on X. In
other words, H1

∗
(
A∨k
)

= 0 for k ∈ {1, 2}. Also, by the definition of eEk
, we have H0

(
A∨k
)

= 0 for
k ∈ {1, 2}.

Using the isomorphism ωX ' OX(−1) and Serre duality, we get that the Ak are ACM bundles
on X for k ∈ {1, 2}. Also, E∨k ' Ek(−2), so we have

0→ Ek(−2)→ O⊕2NX → Ak → 0 . (4.3)

This gives at once H0(Ak(−1)) = 0 and dim
(
H0(Ak)

)
= 2N < 2N(N − 1); hence Ak is not

Ulrich for k ∈ {1, 2}.
For i, j, k ∈ {1, 2}, since Ej is an initialized Ulrich bundle, we have H∗(Ej(−2)) = 0; thus,

applying HomX(−,Ej(−2)) to (4.3), we get ExtpX(Ek,Ej) ' Extp+1
X (Ak,Ej(−2)) for all p > 0.

Using Serre duality and the vanishing we already proved for A∨i , we get Ext∗X(Ai,OX) = 0.
Therefore, applying HomX(Ai,−) to (4.3), we get Extp+1

X (Ai,Ek(−2)) ' ExtpX(Ai,Ak) for all
p > 0. Summing up, we get

ExtpX(Ei,Ej) ' ExtpX(Ai,Aj) for all p and all i, j ∈ {1, 2} .

Hence, (4.2) follows from (4.1), and the proposition is proved.

If X is a cone, then we use the construction of [FP15, Section 7.3]. This gives two initialized
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Ulrich sheaves E1 and E2 of rank 1 on X such that

HomX

(
E∨i ,E

∨
i

)
= kidEi

for i ∈ {1, 2} ,
HomX

(
E∨i ,E

∨
j

)
= 0 if {i, j} = {1, 2} ,

dim Ext1X
(
E∨i ,E

∨
i

)
= N + 1 for i ∈ {1, 2} ,

dim Ext1X
(
E∨i ,E

∨
j

)
= N if {i, j} = {1, 2} .

Since Ext1X(Ei,OX) = 0 for i ∈ {1, 2}, this allows us to define two reflexive ACM sheaves A1

and A2 of rank (N − 1) as in Proposition 4.1 and show that A1 and A2 are not Ulrich as
H0(Ak(−1)) = 0 and dim

(
H0(Ak)

)
= N < N(N − 1). Note that for i ∈ {1, 2}, by Serre duality,

we have H∗
(
E∨i
)

= 0 since ωX ' OX(−1) and Ei is initialized Ulrich. Again, ExtpX(Ai,OX) = 0
for all p and i ∈ {1, 2} so, by the same argument as before, we get

HomX(Ai,Ai) = kidAi
for i ∈ {1, 2} ,

HomX(Ai,Aj) = 0 if {i, j} = {1, 2} ,
dim Ext1X(Ai,Ai) = N + 1 for i ∈ {1, 2} ,
dim Ext1X(Ai,Aj) = N if {i, j} = {1, 2} .

Summing up, independently of whether X is a cone or not, in view of [FP15, Theorem A],
we get that X is non-Ulrich CM-wild and even strictly CM-wild.

4.1.2 A second construction for del Pezzo surfaces. Let us give a second construction with
the further assumption that X is smooth, so X is an anticanonically embedded del Pezzo surface.
This construction has the advantage of being self-contained and the drawback of relying on the
explicit description of X as a blown-up plane or a quadric surface. More precisely, recall that X
is either a blow-up of P2 at 9 − d points or the product variety P1 × P1. We construct ACM
bundles (Ulrich or not) on X with the same methods in both cases, only with a slightly different
choice of the invariants.

If X is a blow-up of P2, we fix a birational surjective morphism π : X → P2 and let OX(L) =
π∗(OP2(1)) and M = 2L. Given (a, b) ∈ N2 with a > 2, we put D(a, b) = 3ab− a2 − b2 + 1 and
ba = 2a. In the second case, we set π1 and π2 to be the projection maps onto the two P1-factors
and let OX(L) = π∗1(OP1(1)) and OX(F ) = π∗2(OP1(1)). This time, we take (a, b) ∈ N2 with
a > 1, and we put D(a, b) = 4ab− a2 − b2 + 1, ba = 3a, M = 2L+ F .

Proposition 4.2. Choose (a, b) such that D(a, b) > 0 and b > ba. Then, for f general enough
in HomX(OX(L)⊕b,OX(M)⊕a), the sheaf E = ker(f) is simple, locally free and ACM, with
dim Ext1X(E,E) = D(a, b) and Ext2X(E,E) = 0; the sheaf E is not Ulrich when b > ba.

Proof. Note that b > ba > a and that the locally free sheaf H = HomX(OX(L)⊕b,OX(M)⊕a) '
OX(M − L)⊕ba is globally generated. Therefore, for a general choice of f ∈ H0(H) and for
any integer k ∈ {0, . . . , a − 1}, the degeneracy locus Dk(f) defined by the (k + 1)-minors of
the associated map f : OX(L)⊕b → OX(M)⊕a has codimension (b− k)(a− k) in X in view of a
Bertini-type result; see, for instance, [Ott95, Teorema 2.8] or [CCJ21, Lemma 11.6]. In particular,
for k = a − 1, since b − a + 1 > ba − a + 1 > 2a − a + 1 > a + 1 > 3 and dim(X) = 2, we have
Da−1(f) = ∅, so f is surjective.

Then, the sheaf E = ker(f) is locally free of rank b−a > 2. We write down the exact sequence

0→ E→ OX(L)⊕b → OX(M)⊕a → 0 . (4.4)
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Next, observe that the k-vector space HomX(OX(L),OX(M)) has dimension 3 or 4 depending
on whether X is a blow-up of P2 or X ' P1 × P1. In both cases, the assumption D(a, b) > 0
ensures that [Kac80, Theorem 4] applies (cf. the argument of [CMP12, Proposition 3.5(i)]) and
shows that E is simple if f is general enough. The same argument proves dim Ext1X(E,E) = D(a, b)
and Ext2X(E,E) = 0.

Next, we show that E is ACM. Note that OX(L) is ACM for the polarization H and that
H0(OX(M + tH)) = 0 for any integer t 6 −1, so (4.4) gives H1(E(tH)) = 0 for all t 6 −1. Also,
Serre duality gives Hk(OX(L−H)) = Hk(OX(M −H)) = 0 for all k. So once we make sure that
H1(E) = 0, we will get that E(H) is H-regular and hence H1(E(tH)) = 0 for t > 0, so that E will
be proved to be ACM.

So let us prove that H1(E) = 0. If X is a blow-up of P2, this follows from [EH92, Proposi-
tions 1.1 and 4.1] in view of the assumption b > ba. When X ' P1 × P1, we first note that the
condition H1(E) = 0 is open on flat families and that{

ker(f) | f ∈ H0(H) gives a surjective map OX(L)⊕b → OX(M)⊕a
}

defines a family of vector bundles on X which is indeed flat.

In view of this discussion, in order to get the statement for general f ∈ H0(H), it suffices to
prove it for one choice of f0 ∈ H0(H), provided that the associated f0 : OX(L)⊕b → OX(M)⊕a is
surjective. To choose a convenient element f0, note that again a Bertini-type argument ensures
that for a general choice of g ∈ HomX

(
OX(L)⊕3,OX(M)

)
, the map g is surjective. Define

F = ker(g), so

0→ F → OX(L)⊕3 → OX(M)→ 0 . (4.5)

Then, choose f0 to be a diagonal map consisting of a copies of g as above, completed by b− ba =
b − 3a zeroes. We thus get a surjective map f0 : OX(L)⊕b → OX(M)⊕a, and E0 = ker(f0) '
OX(L)b−3a ⊕ F⊕a.

We still have to prove H1(E0) = 0. To do it, it suffices to show H1(F) = 0. In turn, we use
an argument analogous to [ESW03, Proposition 5.9] to show this and actually prove that F is
Ulrich on (X,H), where H = 2L+ 2F . Indeed, c1(F) = L− F , so F ' F∨(L− F ), and the dual
of (4.5) yields the exact sequence

0→ OX(−L− 2F )→ OX(−F )⊕3 → F → 0 .

This immediately implies H∗(F) = 0. Also, (4.5) gives

0→ F(−H)→ OX(−L− 2F )⊕3 → OX(−F )→ 0 ,

which implies H∗(F(−H)) = 0, so that F is Ulrich.

We have thus proved that E is ACM. Finally, E is not Ulrich when b > ba. Indeed, from (4.4),
we have H0(E(−H)) = 0, so we know that E is not Ulrich as soon as we show

0 < χ(E) < d(b− a) .

Now, on one hand, the assumption b > ba guarantees χ(E) > 0. On the other hand, when X
is a blow-up of P2, we get χ(E) = 3(b− 2a) < 3(b− a) 6 d(b− a), while for X ' P1×P1 (hence
d = 8), we have χ(E) = 2(b− 4a) < 2(b− a) 6 8(b− a). In both cases, the desired equality holds
and the statement is proved.

Remark 4.3. The previous proof actually implies that for X ' P1 × P1 embedded by 2L + 2F
and b = 3a, the sheaf E obtained by f as in Proposition 4.2 is a simple Ulrich bundle of rank 2a.
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Proposition 4.2 shows the geometric version of Theorem A when X is a del Pezzo surface.
Indeed, choosing for instance b = ba + 1, the above construction provides families of non-Ulrich
pairwise non-isomorphic indecomposable bundles, whose dimension grows as a quadratic function
of a.

4.2 The higher range

According to Section 4.1, we have to justify that Theorem A holds for all non-degenerate reduced
closed ACM subschemes X ⊂ PN of dimension n > 2 and degree d provided that (d, n,N) lie in
the higher range, namely d > N −n+ 3, or n > 3 and d = N −n+ 2. We essentially extract this
from [FP15] up to the result, proved below, that syzygies of Ulrich sheaves are never Ulrich.

Indeed, [FP15, Theorem 4.2] already asserts that when a subscheme X of dimension at least 2
as above is in the range d > N − n + 2 (that is, X is not of minimal degree), then it is of wild
CM-type.

What we do here is to show that the proof of [FP15, Theorem 4.2] already yields non-Ulrich
sheaves. Looking into this proof, we see that it proceeds by reduction to a transverse linear
section Y of X of dimension 1 in case d > N − n+ 3, or of dimension 2 in case d = N − n+ 2.
Namely, setting c for the codimension of Y in X, one first constructs families of arbitrarily large
dimension of indecomposable pairwise non-isomorphic ACM sheaves F on Y . Then, one considers
a minimal graded free resolution F • → F of the finitely generated k[X]-module F = H0

∗(F), of
the form

0← F ← F0 ← F1 ← · · · ← F`−1
d`←− F` ← · · · , (4.6)

where, for all i > 0, the term Fi is a finitely generated free k[X]-module. For i > 0, we write
ΣX
i (F ) for Im(di) and ΣX

i (F) for the sheafification of ΣX
i (F ).

The sheaf E = ΣX
c (F) is ACM over X. One shows via [FP15, Theorem B] that the families of

sheaves E constructed in this way are still made up of indecomposable pairwise non-isomorphic
ACM sheaves provided that the sheaves F are actually Ulrich.

Having this in mind, we consider the following set-up. Let X ⊂ PN be a non-degenerate
reduced closed ACM subscheme of dimension n and degree d over a field k. Let M ⊂ PN be a
linear subspace of codimension c > 1, and assume that Y = X ∩M is of dimension n − c > 1.
Let F be an ACM sheaf on Y . By Section 4.1 and the discussion above, Theorem A holds for
d > N − n+ 2 once we prove the following result.

Theorem 4.4. The sheaf E = ΣX
c (F) is Ulrich on X if and only if F is Ulrich on Y and

d = N − n+ 1.

Proof. If F is Ulrich on Y and d = N − n + 1, then E is Ulrich on X according to [FP15,
Proposition 3.6]. What we have to prove is that E is not Ulrich on X if either F is not Ulrich
on Y or d > N − n+ 2.

Put RX = k[X] and RY = k[Y ]. We consider F = H0
∗(F) as a graded RX -module. Recall

that F is a graded Cohen–Macaulay module on RX , which is non-maximal as its dimension is
dim(RY ) = n − c + 1 < n + 1 = dim(RX). Without loss of generality, we may assume that F

is initialized. So, the RX -module F is generated by finitely many elements of positive degree.
Therefore, the free modules (Fi | i > 0) appearing in the minimal graded free resolution F • of F
over RX take the form

Fi =
⊕

j∈{i,...,ri}

RX(−j)⊕ai,j
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for some sequence of integers (ri | i ∈ N) with ri > i for all i ∈ N and some uniquely determined
integers (ai,j | i ∈ N, j ∈ {i, . . . , ri}), called the RX -Betti numbers of F .

Write the Koszul resolution K • of RY over RX as

0← RY ← K0 ← · · · ← Kc ← 0 with Ki = RX(−i)⊕(ci) for all i ∈ {0, . . . , c} .

Since F is an initialized ACM sheaf over Y , there exists an injective map ϕ : RY → F . This
map lifts to a map of graded complexes ϕ • : K • → F • , which we write, for i ∈ {0, . . . , c}, as

ϕi : RX(−i)⊕(ci) →
⊕

j∈{i,...,ri}

RX(−j)⊕ai,j . (4.7)

In particular, the polynomial maps ϕ0, . . . , ϕc are actually constant.

Next, we observe that ϕi is injective for all i ∈ {0, . . . , c}. Indeed, ϕ0 is injective since ϕ 6= 0
and K0 = RX . For i ∈ {1, . . . , c}, by induction on i we may assume that ϕi−1 is injective, so that
the induced map ΣX

i (RY ) → ΣX
i (F ) is also injective. Thus ker(ϕi) is contained in ΣX

i+1(RY ).
But looking at (4.7), we see that ker(ϕi) is generated by elements of degree i, while all elements
of ΣX

i+1(RY ) have degree at least i+ 1. Therefore, ker(ϕi) = 0.

In view of the previous paragraph, for each i ∈ {0, . . . , c}, we have a splitting Fi ' Ki ⊕Gi
for some graded RX -module Gi such that for each i ∈ {1, . . . , c}, the differential di : Fi → Fi−1
is upper triangular according to the block-matrix form

di : Ki ⊕Gi → Ki−1 ⊕Gi−1 ; (4.8)

that is, Ki → Ki−1 ⊕Gi−1 factors through the Koszul differential Ki → Ki−1.

Thus the map ϕc−1 induces an injection

RX(−c) = ΣX
c (RY ) ↪→ ΣX

c (F ) = E .

This says that H0(X,E(c)) 6= 0.

Next, use [FP15, sequence (3.2)] to get the long exact sequence

0← HomRY
(F,RY (1))← E∨(1− c)← F∨c−1(1− c)← · · · ← F∨0 (1− c)← 0 .

Set Q0 = F0 and for i ∈ {1, . . . , c− 1}, define

Qi = Coker(F∨i−1(1− c)→ F∨i (1− c)) ,

where the maps are extracted from the above complex. We get an injection Qc−1 → E∨(1− c).
Note that the above maps have a block-matrix form which is the transpose of (4.8) and that the
cokernel of the transpose of the Koszul differential K∨c−2(−c) → K∨c−1(−c) is the homogeneous
ideal IY/X of Y in X. Therefore, the map F∨c−2(1− c)→ F∨c−1(1− c) commutes with restricting
the source to K∨c−2(1 − c) and the target to K∨c−1(1 − c). This gives an induced surjection
Qc−1 → IY/X(1). Then, we may extract a non-trivial map

R⊕cX = K∨c−1(1− c)→ Qc−1 ,

which composes to a non-trivial map R⊕cX → E∨(1− c). So H0
(
X,E∨(1− c)

)
6= 0.

Having set up all this, we can prove that if d > N−n+2, no integer t turns E into an initialized
Ulrich sheaf. Indeed, let t be such an integer, so that H∗(X,E(t − j)) = 0 for 1 6 j 6 n. We
proved H0(X,E(c)) 6= 0 and hence t 6 c.

On the other hand, by [FP15, Lemma 3.1], since X is not of minimal degree, we have that
H0(X,ωX(n− 1)) 6= 0. So there is an injective map OX → ωX(n− 1). Tensoring E∨(1− c) with
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this map and using H0
(
X,E∨(1− c)

)
6= 0, we get H0

(
X,E∨ ⊗ ωX(n− c)

)
6= 0. By Serre duality,

we thus have Hn(X,E(c − n)) 6= 0, which implies t > c + 1. Thus no integer t turns E into an
initialized Ulrich sheaf.

Finally, we prove that if F is not an initialized Ulrich sheaf on Y , then again no integer t
turns E(t) into an initialized Ulrich sheaf on X. By the previous argument, we have t 6 c, and
we only need to prove Hn(X,E(c − n)) 6= 0. Now, if F is ACM but not Ulrich over the (n − c)-
dimensional variety Y , since H0(Y,F(−1)) = 0 6= H0(Y,F), we must have Hn−c(Y,F(c−n)) 6= 0.
Sheafifying the resolution F • → F and taking cohomology, we get the following injections for
k ∈ {1, . . . , c}:

Hn−c(Y,F(c− n)) ↪→ · · · ↪→ Hn−c+k(X,ΣX
k (F)(c− n)

)
↪→ · · · ↪→ Hn(X,E(c− n)) .

Therefore, Hn(X,E(c− n)) 6= 0. This concludes the proof.

5. Varieties of minimal degree

For this section, let X ⊂ PN be a non-degenerate closed subscheme of dimension n > 2 over an
algebraically closed field k. Assume that X is ACM of degree d = N − n + 1; that is, X is of
minimal degree. We want to prove Theorem A for X.

First assume that X is not integral (not reduced, or reduced but not irreducible). Then
the argument of [FP15, Section 6] applies to show that X is non-Ulrich CM-wild. This follows
from the fact that X supports ACM sheaves supported on the different components of X, or
on the reduced structure of a component of X, and that we can twist the leftmost term of this
extension by OX(q) for q � 0 and therefore obtain a representation embedding whose source is
a wild algebra and whose target consists of ACM sheaves on X which are not Ulrich.

If X is integral but not smooth, then X is a cone over a smooth variety which is again ACM
and of minimal degree, whose apex is a linear space of dimension m > 0. Also in this case, the
argument of [FP15, Section 6.1] gives rise to ACM sheaves E which are not Ulrich except for
finitely many choices of E. Indeed, these sheaves arise as extensions of the form

0→ A(q)→ E→ B→ 0 ,

where A and B are sheaves obtained by extending to X the presentation of initialized Ulrich
sheaves on the base of the cone and q > 0. For q � 0, the sheaf E cannot be Ulrich, so we get
that X is non-Ulrich CM-wild.

So from now on, in order to prove Theorem A, we can assume that X is smooth and irre-
ducible; hence, according to the Bertini–del Pezzo classification (cf. [EH87]), the subscheme X
is a quadric hypersurface or a rational normal scroll.

After setting up some notation, this case will be settled in the next lemma. Given n > 2
and a non-decreasing sequence a = (a1, . . . , an) of integers 1 6 a1 6 · · · 6 an, put d =

∑n
i=1 ai

and N = d + n − 1. We denote by S(a) = S(a1, . . . , an) the rational normal scroll defined as
the projectivization of ⊕ni=1OP1(ai), embedded as a submanifold of degree d in Pd+n−1 by the
tautological relatively ample line bundle. We set H for the hyperplane class of S(a) and F for
the class of a fibre of the projection S(a)→ P1. Let L = OX((d− 1)F −H).

It is well known that X = S(a) is CM-finite if a ∈ {(1, 1), (1, 2)}. By [FM17], the scheme X
is CM-tame if a ∈ {(1, 3), (2, 2)}. We know by [Mir13] that the rational normal scroll X = S(a)
is Ulrich-wild except for the cases above, namely a ∈ {(1, 1), (1, 2), (1, 3), (2, 2)}. If we seek un-
bounded families of non-Ulrich bundles, we should be a bit more careful and exclude the excep-

417



D. Faenzi, F. Malaspina and G. Sanna

tional cases appearing in the statement of Theorem A, which is to say a ∈ {(1, 3), (2, 2), (1, 1, 1)}.
So, from now on, we actually assume

n > 4 or n = 3, d > 4 or n = 2, d > 5 .

We start by noting that the set-up of [FM17, Theorem B] applies in any dimension to give
rigid Ulrich bundles on X associated with Fibonacci-like sequences. Indeed, put ` = (n−1)d−n,
so that hi(OX(H − dF )) = 0 for all i 6= 1 and hence by the Riemann–Roch theorem,

` = −χ(L∨(−F )) = h1(OX(H − dF )) > 2

in our range for (d, n). Define recursively the Fibonacci-like numbers a`,k ∈ N by

a`,0 = 0 , a`,1 = 1 , a`,k+2 = `a`,k+1 − a`,k for k ∈ N .

Since ` > 2, the sequence (a`,k) is strictly increasing along k.

Recall the notion of exceptional sheaf E on X; namely, E is a simple coherent sheaf such
that ExtiX(E,E) = 0 for i > 0. Also recall that two exceptional sheaves (E,F) form an excep-
tional pair if ExtiX(F,E) = 0 for all i. The pair (L,OX(−F )) is exceptional. We mentioned that
h1(L∨(−F )) = ` and hi(L∨(−F )) = 0 for i 6= 1. Then, making use of mutations like in [FM17,
Section 2], we get that for each k > 0, there is a unique exceptional sheaf Uk which fits into

0→ OX(−F )⊕a`,k → Uk → L⊕a`,k+1 → 0 . (5.1)

Theorem A will be proved for X if we check the following result.

Lemma 5.1. The sheaves B = Uk and A = OX satisfy the assumptions of Theorem 3.1 as long
as we choose

– k = 0 for n > 4,

– k = 1 for n = 3 and d > 4,

– k = 3 for n = 2 and d > 5.

Proof. Working as in [FM17, Section 2], we check that Uk is an exceptional Ulrich bundle which
is actually initialized by t = 1. As a consequence, Uk is (strictly) semistable simple sheaf with

p(Uk) =
td

n!

n−1∏
i=1

(t+ i) ≺ td+ n

n!

n−1∏
i=1

(t+ i) = p(OX) .

The sheaf OX is not Ulrich and is obviously stable. So, in order to verify the assumptions of
Theorem 3.1, it only remains to check the condition on the dimension of the extension space.
We note that hi

(
L∨
)

= 0 for i > 2 and that, by the Riemann–Roch theorem,

χ
(
L∨
)

= 2n+ (1− n)d .

Looking at (5.1), we deduce hi
(
U∨k
)

= 0 for i > 2, so

dimk Ext1X(Uk,OX) = h1
(
U∨k
)
> −χ

(
U∨k
)

(5.2)

= −a`,k+1χ
(
L∨
)
− 2a`,k = a`,k+1((n− 1)d− 2n)− 2a`,k .

First, assume n > 4. In particular, we have d > 4. Recall that for the case n > 4, we
have chosen k = 0. Hence, we consider U0 = L and note that h1

(
L∨
)

= −χ
(
L∨
)
> 4 because

(n− 1)d− 2n > 3d− 8 > 4. Thus, the lemma is proved for n > 4. Next, assume n = 3, so that
our choice is k = 1. Then, formula (5.2) gives h1

(
U∨1
)
> 4d2− 18d+ 16, which is at least 8 when
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d > 4. Finally, let n = 2, in which case we have chosen k = 3. Then, evaluating (5.2), we get
h1
(
U∨3
)
> d4 − 10d3 + 32d2 − 36d+ 10. This is at least 5 for d > 5.

The proof of Theorem A is now complete.

6. The Segre product of a line and a plane

Let us now turn to the analysis of the Segre product X = P1×P2, which we consider as a smooth
submanifold of P5. In other words, X is the rational normal scroll X = S(1, 1, 1) of degree d = 3
embedded by the tautological relatively ample divisor H, hence X has minimal degree. A smooth
hyperplane section of X is the CM-finite cubic scroll S(1, 2).

Our goal here is to classify all ACM indecomposable bundles on X. Of course, this is not
quite possible since Ulrich bundles form a wild class in terms of representation theory, so we
focus on non-Ulrich bundles and we classify all those.

6.1 A first classification result via homological non-vanishing

Let us first give the basic ACM bundles that will be the output of the classification. Put π for
the projection X → P1 and Ωπ for the relative cotangent bundle. Here X is a product, so Ωπ is
the pull-back of the cotangent bundle of P2 via the projection σ : X → P2. Set L = H − F , so
OX(L) = σ∗(OP2(1)). Recall that we have

ωX ' OX(−2F − 3L) .

We easily see that OX(L) is ACM and Ωπ(H +L) is Ulrich. We start with a lemma, inspired
by [BM11], that classifies these sheaves as bundles with a specific non-vanishing.

Lemma 6.1. Let E be a locally free sheaf on X. Then E ' Ωπ(L) if and only if E is indecomposable
and

H1(E) = H1(E(−1)) = H2(E(−2)) = 0 , H1(E(−L)) 6= 0 . (6.1)

Proof. One implication is clear, so we assume that E is an indecomposable locally free sheaf sat-
isfying (6.1) and we prove that E ' Ωπ(L). Recall the standard isomorphism Ext1X(OX(L),E) '
H1(E(−L)). Then, write the vertical Euler sequence

0→ Ωπ(L)→ O⊕3X → OX(L)→ 0 (6.2)

and apply HomX(−,E) to it. Since Ext1X(OX ,E) = H1(E) = 0, we get a surjection

HomX(Ωπ(L),E)� Ext1X(OX(L),E) ' H1(E(−L)) .

Take e ∈ H1(E(−L)) \ {0}, and consider a map f : Ωπ(L) → E lying in the preimage of e under
the above surjection.

Further, we consider the dual vertical Euler sequence, written in the form

0→ OX(−2L)→ OX(−L)⊕3 → Ωπ(L)→ 0 . (6.3)

Note that, by Serre duality, our assumption gives

Ext1X(E,OX(−L)) ' H2(E(−2))∨ = 0 .

Next, we write the horizontal Euler sequence in the form

0→ OX(−2L− 2F )→ OX(−2L− F )⊕2 → OX(−2L)→ 0 . (6.4)
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Again, our assumption gives, via Serre duality,

Ext2X(E,OX(−2L− F )) ' H1(E(−1))∨ = 0 .

We thus have a surjection as a composition of surjections:

HomX(E,Ωπ(L))� Ext1X(E,OX(−2L))� Ext2X(E,OX(−2)) . (6.5)

Choose a generator kX of the vector space H3(ωX) and h ∈ Ext2X(E,OX(−2)) such that the
Yoneda product

H1(E(−L))⊗ Ext2X(E,OX(−2))→ H3(OX(−2F − 3L)) ' H3(ωX)

sends e⊗h to k. Then, choose g : E→ Ωπ(L) lying in the preimage of h under the surjection (6.5).

It is well known that ΩP2 is a simple sheaf, so the same holds for Ωπ(L). Therefore, if the
map g ◦ f is non-zero, it must be a non-zero multiple of the identity. This immediately implies
that Ωπ(L) is a direct summand of E, which forces E ' Ωπ(L) because E is indecomposable.

It remains to check that g◦f 6= 0. To do this, we consider the following commutative diagram
of Yoneda maps:

HomX(Ωπ(L),E)⊗HomX(E,Ωπ(L)) //

��

HomX(Ωπ(L),Ωπ(L))

��
HomX(Ωπ(L),E)⊗ Ext2X(E,OX(−2)) //

��

Ext2X(Ωπ(L),OX(−2))

��
Ext1X(OX(L),E)⊗ Ext2X(E,OX(−2)) // H3(ωX) .

(6.6)

Our goal is to prove that the map appearing in the top row sends f⊗g to a non-zero element.
The upper map in the left column sends f ⊗g to f ⊗h, so it suffices to check that the map in the
middle row sends f ⊗ h to a non-zero element. In turn, the lower map in the left column sends
f ⊗h to e⊗h, so it is enough to show that the map in the bottom row sends e⊗h to a non-zero
element. But this last map sends e⊗ h to kX ; hence, we are done.

In a similar vein, we show the following.

Lemma 6.2. Let E be an indecomposable locally free sheaf on X. Then

i) there is an isomorphism E ' OX(−L) if and only if

H0(E) = H1(E(−L)) = H2(E(−F − 2L)) = 0 , H0(E(L)) 6= 0 ; (6.7)

ii) there is an isomorphism E ' OX(−1) if and only if

H0(E(L)) = H1(E(−F )) = H2(E(−1)) = 0 , H0(E(1)) 6= 0 . (6.8)

Proof. Both items have an obvious implication, what we have to prove is that E is isomorphic
to the desired sheaf after assuming the cohomological conditions.

Let us prove item i). Choose a non-zero element f of H0(E(L)) ' HomX(OX(−L),E).
Next, we choose a generator kX of H3(ωX) and note that, by Serre duality, there exists an
h ∈ Ext3X(E,OX(−2F − 4L)) such that the Yoneda pairing

HomX(OX(−L),E)⊗ Ext3X(E,OX(−2F − 4L))→ H3(ωX)

sends f ⊗ h to k.
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Next, write the exact sequences (6.2), (6.3) and (6.4) again, twisted by lines bundles on X
so that they take the following form:

0→ OX(−2F − 4L)→ OX(−2F − 3L)⊕3 → Ωπ(−2F − L)→ 0 ,

0→ Ωπ(−2F − L)→ OX(−2)⊕3 → OX(−2F − L)→ 0 ,

0→ OX(−2F − L)→ OX(−1)⊕2 → OX(−L)→ 0 .

We remark that the vanishing assumptions of item i) and Serre duality imply

Ext3X(E,OX(−2F − 3L)) ' H0(E)∗ = 0 ,

Ext2X(E,OX(−2)) ' H1(E(−L))∗ = 0 ,

Ext1X(E,OX(−1)) ' H2(E(−F − 2L))∗ = 0 .

Therefore, applying HomX(E,−) to the three sequences above, we get a surjection

HomX(E,OX(−L))� Ext3X(E,OX(2F − 4L)) . (6.9)

We now choose g ∈ HomX(E,OX(−L)) in the preimage of h.

Therefore, we have a commutative diagram of the form

HomX(OX(−L),E)⊗HomX(E,OX(−L))

��

// HomX(OX(−L),OX(−L))

��
HomX(OX(−L),E)⊗ Ext1X(E,OX(−2F − L))

��

// Ext1X(OX(−L),OX(−2F − L))

��
HomX(OX(−L),E)⊗ Ext2X(E,Ωπ(−2F − L))

��

// Ext2X(OX(−L),Ωπ(−2F ))

��
HomX(OX(−L),E)⊗ Ext3X(E,OX(2F − 4L)) // Ext3(OX(−L),OX(−2F − 4L)) ,

where the horizontal maps are given by the Yoneda pairing, the left vertical ones are given
by the factorization of the map (6.9), while the maps in the right vertical column are ob-
tained by applying HomX(OX(−L),−) to the three exact sequences above. Since the iden-
tity map of OX(−L) is sent to kX via the composition of vertical maps by construction, it
follows that g ◦ f is sent to the identity of OX(−L) via the top horizontal map. This says
that OX(−L) is a direct summand of E and therefore proves E ' OX(−L) by the indecompos-
ability of E.

The proof of item ii) is similar, so we only sketch the argument. The strategy this time is to
apply HomX(E,−) to the exact sequences

0→ OX(−3F − 4L)→ OX(−2F − 4L)⊕2 → OX(−F − 4L)→ 0 ,

0→ OX(−F − 4L)→ OX(−F − 3L)⊕3 → Ωπ(−1)→ 0 ,

0→ Ωπ(−1)→ OX(−F − 2L)⊕3 → OX(−1)→ 0

and to use Serre duality which gives, via the assumption of item ii),

Ext3X(E,OX(−2F − 4L)) ' H0(E(L))∗ = 0 ,

Ext2X(E,OX(−F − 3L)) ' H1(E(−F ))∗ = 0 ,

Ext1X(E,OX(−F − 2L)) ' H2(E(−1))∗ = 0 .

The rest of the proof follows the same pattern as that of item i).
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6.2 Beilinson-type spectral sequence

We use the derived category D(X) of bounded complexes of coherent sheaves over the smooth
projective variety X in order to write the Beilinson-type spectral sequence associated with a co-
herent sheaf E on X after fixing a convenient full exceptional sequence in D(X). Indeed, the
point is that the terms of this spectral sequence take a special form when E is ACM, and this
will be our basic tool to classify such sheaves.

6.2.1 Background on exceptional objects and mutations. Let us first recall some terminology.
An object E of D(X) is called exceptional if Ext•X(E,E) = k, concentrated in degree zero. An or-
dered set of exceptional objects (E0, . . . ,Es) is called an exceptional collection if Ext•X(Ei,Ej) = 0
for i > j. An exceptional collection is full when Ext•X(Ei,F) = 0 for all i implies F = 0. Equiva-
lently, the collection is full when Ext•X(F,Ei) = 0 implies F = 0.

Exceptional collections can be mutated ; let us recall what that means. Let E be an exceptional
object in D(X). Then there are endofunctors LE and RE of D(X), called respectively the left and
right mutation functors, such that for all F in D(X), there are functorial distinguished triangles

LE(F)→ Ext•X(E,F)⊗ E→ F → LE(F)[1] ,

RE(F)[−1]→ F → Ext•X(F,E)∨ ⊗ E→ RE(F) .

For all i = 0, . . . , s, we define the right and left dual objects

Ed
i = LE0LE1 · · ·LEs−i−1

Es−i ,
dEi = REsREs−1 · · ·REs−i+1

Es−i .

It turns out that if E• = (E0, . . . ,Es) is a full exceptional collection, then both
(
Ed
0 , . . . ,E

d
s

)
and dE• =

(
dE0, . . . ,

dEs
)

also are full exceptional collections, called respectively the right and
left dual collections of (E0, . . . ,Es). We refer to [GK04, Section 2.6]. The dual collections are
characterized by the following property:

Ext`X
(
dEi,Ej

)
' Ext`X

(
Ei,E

d
j

)
'

{
k if i+ j = s and i = ` ,

0 otherwise .
(6.10)

Given an object F of D(X) and a full exceptional collection (E0, . . . ,Es), there is a spectral
sequence ⊕

r+t=q

ExtrX
(
dEs−p,F

)
⊗Ht(Ep) = Ep,q1 ⇒ Hp+q−s(F) ,

where Hi denotes the ith homology sheaf of F. This means that for all (p, q) such that p+ q 6= s,
we have Ep,q∞ = 0, while ⊕

p+q=s

Ep,q∞ ' gr(F) ,

where gr(F) denotes the graded object with respect to a filtration of F of the form

F = F0 ⊃ F1 ⊃ · · · ⊃ Fs ⊃ Fs+1 = 0 with Fj/Fj+1 ' Ej,s−j∞ .

The rth differential of the spectral sequence reads δp,qr : Ep,qr → Ep+r,q−r+1
r .

6.2.2 An exceptional collection adapted to ACM sheaves. Let us choose a full exceptional
collection over X adapted to the classification of ACM sheaves. Recall that we denoted by F the
divisor class of the P2-bundle map π : X → P1 such that D(X) has the following semiorthogonal
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decomposition:

D(X) =
〈
π∗D

(
P1
)
⊗ OX(−2L), π∗D

(
P1
)
⊗ OX(−L), π∗D

(
P1
)〉

= 〈OX(−F − 2L),OX(−2L),OX(−F − L),OX(−L),OX(−F ),OX〉 .

Twisting by a line bundle OX(L) and performing a right mutation given by the Euler se-
quences on P1, this is replaced by

D(X) = 〈OX(−L),OX(F − L),OX(−F ),OX ,OX(L− F ),OX(L)〉 .

Since OX and OX(L− F ) are mutually orthogonal, mutation gives

D(X) = 〈(OX(−L),OX(F − L),OX(−F ),OX(L− F ),OX ,OX(L)〉 .

Finally, a right mutation given by the Euler sequences on P2 gives the following full excep-
tional collection of vector bundles over X:

E• =
(
OX(−L),OX(F − L),OX(−F ),OX(L− F ),Ωπ(L),OX

)
.

Setting Tπ = Ω∨π ' Ωπ(3L), we write the left dual of this collection as

dE• =
(
OX ,OX(L),OX(1)[1],Tπ(F )[1],OX(F + 2L)[2],OX(2)[2]

)
. (6.11)

Note that E1 = OX(F −L) is the Ulrich line bundle L from Section 5. By Künneth’s formula,
one gets another special feature of this collection, namely that

HomX(E0,E2) = HomX(E0,E3) = 0 ,

HomX(E1,Ej) = 0 for j 6= 1 ,

HomX(E2,E4) = 0 ,

HomX(E3,E4) = 0 .

(6.12)

6.3 Beilinson resolution of non-Ulrich sheaves

Our goal for this subsection is to prove the next result.

Theorem 6.3. Up to a twist by OX(t), an indecomposable ACM bundle F on X is isomorphic
to OX(−1), or to OX(−L), or to Ωπ(L), or to an Ulrich bundle U fitting into

0→ OX(−F )⊕a → U→ OX(F − L)⊕b → 0 for some (a, b) ∈ N2 .

The words “up to a twist” have the following more precise meaning: up to replacing F

with F(t), we may assume that h0(F) = 0 and h0(F(1)) 6= 0. Then F is exactly one of the sheaves
appearing in the statement of Theorem 6.3. In other words, Theorem 6.3 proves Theorem B from
the introduction.

We will prove the theorem through several claims. The very first argument is to use Lem-
ma 6.1. Note that the vanishing conditions appearing in that lemma are verified for any twist
of F since F is ACM, so if there is a twist t ∈ Z such that H1(F(tH − L)) 6= 0, we will have
F(t) ' Ωπ(L). Theorem 6.3 is proved in this case.

Therefore, from now on we may assume H1(F(tH − L)) = 0 for all t ∈ Z. The next step is
to observe that since F locally free and OX(1) is very ample, there is a unique t0 ∈ Z such that
F(t0) satisfies h0(F(t0)) = 0 and h0(F(t0 + 1)) 6= 0. We implicitly replace F with F(t0) from now
on. In particular, we have H0(X,F) = 0. We put

ai,j = dimk ExtiX
(
dEj ,F

)
.
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Claim 6.4. Let F be as above. Then a1,3 = a2,4 = a2,3 = a3,4 = 0.

Proof. Recall that in view of Lemma 6.1, we may assume H1(F(−L)) = 0. Let us summarize the
vanishing conditions we have so far by writing down the matrix (ai,j). Traditionally, one rather
writes the table (bi,j) = (a5−i,5−j):

F(−2)[−2] F(−F − 2L)[−2] F ⊗ Ωπ(−F )[−1] F(−1)[−1] F(−L) F

a5,5 a5,4 0 0 0 0

0 a4,4 a4,3 a4,2 0 0

0 a3,4 a3,3 0 a3,1 a3,0

0 a2,4 a2,3 0 a2,1 0

0 0 a1,3 0 0 0

0 0 0 0 0 0

OX(−L) OX(F − L) OX(−F ) OX(L− F ) Ωπ(L) OX

This table means that the (p, q)th term of Ep,q1 is the direct sum of as many copies of Ei
as the coefficient (bi,j) appearing in the above table. Also, the coefficients above are obtained
by computing the dimension of the cohomology of the bundle appearing in the ith column of
the first row, reading cohomological degree from bottom to top, with a shift indicated by the
brackets.

Let us focus on the summand OX(F −L)⊕a2,4 = E1,2
1 . By (6.12), we have δ1,21 = 0. Obviously,

δ1,2r = 0 for r > 2. Also, Ep,q1 = 0 for p + q 6 2, so OX(F − L)⊕a2,4 survives to E1,2
∞ , which in

turn is zero because Ep,q∞ is concentrated at p+ q = 5. Therefore, a2,4 = 0. For the same reason,
we get a1,3 = 0. Summing up, Ep,q1 = 0 for p+ q 6 3.

Let us now look at the summand OX(−F )⊕a2,3 = E2,2
1 . The map δ2,2r is clearly zero for all

r > 1, and since we proved Ep,q1 = 0 for p + q 6 3, we get a2,3 = 0 again because Ep,q∞ is
concentrated at p+ q = 5. The last vanishing a3,4 = 0 follows a similar pattern.

In terms of the Beilinson spectral sequence, the previous claim shows Ep,q1 = 0 for p+ q 6 4.

Because of (6.12), we have δ2,3r = 0 for all r > 1, so the vanishing of Ep,q1 with p+ q 6 4 implies

that the term OX(−F )⊕a3,3 survives at E2,3
∞ and is thus a direct summand of gr(F). For the

same reason, OX(F − L)⊕a4,4 survives at E1,4
∞ . This means that the filtration of F induced by

the Beilinson-type spectral sequence takes the form

0 = F6 ⊂ F5 ⊂ · · · ⊂ F0 = F (6.13)

with

F5 = F4 = F3 = 0 , F2 ' OX(−F )⊕a3,3 , F1/F2 ' OX(F − L)⊕a4,4 , F/F1 ' E0,5
∞ .

Our next goal is to compute E0,5
∞ .

Lemma 6.5. There is an exact sequence

0→ E0,5
∞ → G→ Ωπ(L)⊕a2,1 → 0 , (6.14)

where G is a coherent sheaf on X fitting into a long exact sequence

0→ G→ Ker
(
δ0,51

)
→ Ker

(
δ2,41

)
→ Ker

(
δ4,31

)
→ Coker

(
δ0,51

)
→ Coker

(
δ2,41

)
→ Coker

(
δ4,31

)
→ 0 .

(6.15)
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Before going into the proof, let us display the maps δp,q1 we are interested in

δ0,51 : OX(−L)⊕a5,5 → OX(F − L)⊕a5,4 , (6.16)

δ2,41 : OX(−F )⊕a4,3 → OX(L− F )⊕a4,2 , (6.17)

δ4,31 : Ωπ(L)⊕a3,1 → O
⊕a3,0
X . (6.18)

Proof. We rewrite the cohomology table (bi,j) in view of the vanishing proved in the previous

claim and after removing a3,3 and a4,4, which do not contribute to E0,5
∞ , as we have just seen.

F(−2)[−2] F(−F − 2L)[−2] F ⊗ Ωπ(−F )[−1] F(−1)[−1] F(−L) F

a5,5 a5,4 0 0 0 0

0 0 a4,3 a4,2 0 0

0 0 0 0 a3,1 a3,0

0 0 0 0 a2,1 0

0 0 0 0 0 0

0 0 0 0 0 0

OX(−L) OX(F − L) OX(−F ) OX(L− F ) Ωπ(L) OX

In view of this table, we see that the differential δ1 has only three possibly non-zero terms,
namely δ0,51 , δ2,41 and δ4,31 . So Ep,q2 differs from Ep,q1 only when (p, q) equals (0, 5), (1, 5), (2, 4),
(3, 4), (4, 3) and (5, 3), and we get

E0,5
2 ' ker

(
δ0,51

)
, E1,5

2 ' Coker
(
δ0,51

)
,

E2,4
2 ' ker

(
δ2,41

)
, E3,4

2 ' Coker
(
δ2,41

)
,

E4,3
2 ' ker

(
δ4,31

)
, E5,3

2 ' Coker
(
δ4,31

)
.

Now, since Ep,q∞ is concentrated at p + q = 5, we realize that actually E5,3
3 = 0, so the map

δ3,42 : E3,4
2 → E5,3

2 is surjective and actually also E3,4
3 = 0; hence, the kernel of δ3,42 is the image

of δ0,52 . We have thus proved the second line of (6.15). For the same reason, we have the exactness
of the sequence

Ker
(
δ0,51

)
→ Ker

(
δ2,41

)
→ Ker

(
δ4,31

)
, (6.19)

where the maps are just δ0,52 and δ2,42 .

This completes the analysis of the second page of the spectral sequence. We turn now to E3.
Note that E1,5

3 ' Ker
(
δ1,52

)
is the kernel of the map δ1,52 : Coker

(
δ0,51

)
→ Coker

(
δ2,41

)
appearing

in (6.15). Similarly, E4,3
3 ' Coker

(
δ2,42

)
is the cokernel of the map δ2,42 : Ker

(
δ2,41

)
→ Ker

(
δ4,31

)
showing up in (6.19). Since E1,5

4 = E4,3
4 = 0, the map δ1,53 gives an isomorphism from E1,5

3 to

E4,3
3 ; hence, the exactness of (6.15) is proved at the connecting map between the two rows.

Finally, E0,5
3 ' Ker

(
δ0,52

)
is the kernel G of the first map appearing in (6.19), and clearly

E0,5
3 ' E0,5

4 . The map δ0,54 thus sends this kernel surjectively onto E4,2
4 ' Ωπ(L)⊕a2,1 , with kernel

E0,5
5 ' E0,5

∞ . The lemma is thus proved.

Lemma 6.6. In the previous setting, we have

Ext1X(G,OX(F − L)) = Ext1X(G,OX(−F )) = 0 .
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Proof. We use the exact sequence (6.15). Indeed, let N be one of the two line bundles OX(F −L)
or OX(−F ), and apply HomX(−,N) to (6.15). Set Gi for the image of the ith map δ2i−2,6−i2

of (6.15). Then our statement is proved if we show that

ExtiX
(

Ker
(
δ2i−2,6−i1

)
,N
)

= 0 for i = 1, 2, 3 . (6.20)

Indeed, this would imply Exti+1
X (Gi,N) = 0 for i = 1, 2, which in turn would give Ext1X(G,N) = 0,

which is our statement.

To check (6.20), we look more closely at the defining maps (6.16), (6.17) and (6.18). For i = 1,
we note that (6.16) is constant along the factor P2 of the product X ' P1 × P2, so ker

(
δ0,51

)
is the pull-back to X of a torsion-free sheaf on P1, twisted by OX(−L). Such a sheaf is then
locally free on P1 and therefore splits as a direct sum of line bundles. Actually, the form of (6.16)
implies that there are integers cj , one for each j ∈ N (with only finitely many values of j ∈ N
satisfying cj 6= 0), such that

ker
(
δ0,51

)
'
⊕
j∈N

OX(−L− jF )⊕cj .

It follows plainly that Ext1X
(

ker
(
δ0,51

)
,N
)

= 0 for our choices of N.

For i = 2, applying a similar argument to (6.17), we get that there exists a torsion-free sheaf V
on P2 such that

ker
(
δ2,41

)
' σ∗(V)⊗ OX(−F ) , H0

(
P2,V(−1)

)
= 0 . (6.21)

Therefore, by Künneth’s formula, we have

Ext2X
(

ker
(
δ2,41

)
,OX(F − L)

)
' Ext2P2

(
V,OP2(−1)

)
⊗H0

(
P1,OP1(1)

)
,

which vanishes because Serre duality and (6.21) imply

Ext2P2

(
V,OP2(−1)

)
' HomP2

(
OP2 ,V(−2)

)∨
= 0 .

The vanishing for N = OX(−F ) is clear.

For i = 3, again looking at (6.18), we get a torsion-free sheaf W on P2 such that

ker
(
δ4,31

)
' σ∗(W) . (6.22)

This time, Künneth’s formula provides Ext3X
(

ker
(
δ4,31

)
,N
)

= 0 immediately.

Lemma 6.7. For any sheaf U which is an extension of copies of OX(F − L) and OX(−F ), we
have Ext1X

(
E0,5
∞ ,U

)
= 0.

Proof. Clearly, it suffices to check that Ext1X
(
E0,5
∞ ,N

)
= 0 with N = OX(−F ) and N = OX(F −

L). According to Lemma 6.5, we need to check Ext1X(G,N) = 0 and Ext2X(Ωπ(L),N) = 0. The
first vanishing comes from Lemma 6.6, and the second one is straightforward.

Now comes the key point. Indeed, the sheaf F1 taken from the filtration (6.13) is an Ulrich
sheaf of the form U as in Lemma 6.7. Therefore, F is the direct sum of E0,5

∞ and F1. But F is
indecomposable; hence, either F1 = 0 and F ' E0,5

∞ , or F ' U. In the latter case, Theorem 6.3
is proved, so it remains to analyze the former one. So we assume from now on F ' E0,5

∞ .

Lemma 6.8. The sheaf F ' E0,5
∞ is isomorphic to OX(−L) or OX(−1).

Proof. Since F ' E0,5
∞ , we have a3,3 = a4,4 = 0, so the cohomology table (bi,j) looks as in the

proof of Lemma 6.5. We now argue on whether H0(F(L)) is zero or not.
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If H0(F(L)) 6= 0, looking at the cohomology table of F, we see that H1(F(−L)) = H2(F(−F −
2L)) = 0, and because we are assuming H0(F) = 0, we have that item i) of Lemma 6.2 applies
to give F ' OX(−L).

If H0(F(L)) = 0, we use once more the vertical Euler sequence, in the form

0→ Ωπ(−F )→ OX(−1)⊕3 → OX(−F )→ 0 .

We tensor this sequence with F and take cohomology. From the cohomology table of F, we extract
H2(F⊗Ωπ(−F )) = 0, which combined with the fact that F is ACM gives H1(F(−F )) = 0. Also,
of course H2(F(−1)) = 0, while H0(F(1)) 6= 0 by assumption. Therefore, item ii) of Lemma 6.2
applies and shows F ' OX(−1).

This completes the proof of Theorem 6.3.

6.3.1 Proof of Corollaries C and D. The proof of Corollary C goes as follows. Set u(t) =
1
2(t + 2)(t + 1)t and note that u is the reduced Hilbert polynomial of an Ulrich sheaf on X
initialized by t = 1.

Let F be a semistable ACM bundle on X. According to Theorem B, for each indecomposable
direct summand G of the graded bundle gr(F) provided by a Jordan–Hölder filtration of F, there
is some s ∈ Z such that H0(G(s)) = 0 and H0(G(s + 1)) 6= 0, so G(s) is one of the sheaves
appearing in the next table, where the reduced Hilbert polynomial is also shown:

G OX(−F ) OX(F − L) Ωπ(L) OX OX(−L)

p(G(s)) u(t) u(t) u(t) 1
2(t+ 2)(t+ 1)2 1

2(t+ 1)2t

Note that these polynomials are pairwise distinct, even upon replacing t with t + s for any
s ∈ Z. Therefore, there is a fixed s ∈ Z such that all the summands G(s+ 1) are Ulrich bundles
(in which case the summands G(s) are isomorphic to OX(−F ) or OX(F − L) or Ωπ(L)), or all
summands G(s) are isomorphic to OX , or finally they are isomorphic to OX(−L). In the last two
cases, G(s) is itself a trivial bundle or a direct sum of copies of OX(−L). In the first case, the
graded bundle gr(F(−s)) is of the form

OX(−F )⊕a ⊕ OX(F − L)⊕b ⊕ Ωπ(L)⊕c

for some integers (a, b, c). Note that there are finitely many ways to choose a, b, c in the above
display while keeping the Hilbert polynomial unchanged. This shows that the moduli space of
semistable ACM bundles with fixed Hilbert polynomial is a finite set. Corollary C is proved.

For the proof of Corollary D, we construct the bundles Uk by mutation. Put

U−1 = OX(−F ) , U0 = OX(F − L) ,

U1 = LU0U−1[1] , Uk+1 = LUk
Uk−1 for k > 1 ,

U−2 = RU−1U0[−1] , U−k−2 = RU−k−1
U−k for k > 1 .

The fact that the objects Uk are exceptional sheaves having a resolution of the desired form
follows as in [FM17, Theorem B].

By Theorem B, any indecomposable rigid ACM bundle on X must be, up to a twist, isomor-
phic to OX(−1), OX(−L) or Ωπ(L) or a rigid Ulrich bundle of the form (1.1). In turn, again as in
[FM17, Theorem B], a rigid sheaf appearing as the middle term of (1.1) must be isomorphic to Uk
for some k ∈ Z, with (a, b) = (ck−1, ck). Moreover, the equality (a, b) = (ck−1, ck) determines the
rigid bundle Uk uniquely.
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Finally, given k ∈ Z, since U∨k ⊗ωX(2) is a rigid Ulrich bundle which fits as middle term of an
extension of the form (1.1) with the same values of a and b as U1−k, by the uniqueness argument
for the rigid bundles Uk (cf. again [FM17, Section 2]), we must have U1−k ' U∨k ⊗ ωX(2). This
concludes the proof of Corollary D.

Acknowledgements

We are grateful to Gianfranco Casnati for invaluable help. We thank the referees of this paper
for the many suggestions allowing a considerable improvement of the paper.

References

Ati57 M. F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. 7 (1957), no. 1,
414–452; doi:10.1112/plms/s3-7.1.414.

BBDG06 L. Bodnarchuk, I. Burban, Yu. Drozd and G.-M. Greuel, Vector bundles and torsion free sheaves
on degenerations of elliptic curves, in Global Aspects of Complex Geometry (Springer, Berlin,
2006), 83–128; doi:10.1007/3-540-35480-8_{}3.

BDG01 I. Burban, Yu. Drozd and G.-M. Greuel, Vector bundles on singular projective curves, Ap-
plications of Algebraic Geometry to Coding Theory, Physics and Computation (Eilat, 2001),
NATO Sci. Ser. II Math. Phys. Chem., vol. 36 (Kluwer Acad. Publ., Dordrecht, 2001), 1–15;
doi:10.1007/978-94-010-1011-5_{}1.

BEH87 R.-O. Buchweitz, D. Eisenbud and J. Herzog, Cohen–Macaulay modules on quadrics, Singu-
larities, Representation of Algebras, and Vector Bundles (Lambrecht, 1985), Lecture Notes in
Math., vol. 1273 (Springer, Berlin, 1987), 58–116; doi:10.1007/BFb0078838.

BF11 M. C. Brambilla and D. Faenzi, Moduli spaces of rank-2 ACM bundles on prime Fano threefolds,
Michigan Math. J. 60 (2011), no. 1, 113–148; doi:10.1307/mmj/1301586307.

BGS87 R.-O. Buchweitz, G.-M. Greuel and F.-O. Schreyer, Cohen–Macaulay modules on hypersurface
singularities. II, Invent. Math. 88 (1987), no. 1, 165–182; doi:10.1007/BF01405096.

BM11 E. Ballico and F. Malaspina, Regularity and cohomological splitting conditions for vector bundles
on multiprojective spaces, J. Algebra 345 (2011), 137–149; doi:10.1016/j.jalgebra.2011.
08.015.
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