Il testo propone alcune nozioni di q-calcolo nell'ambito del quantum calculus. Si daranno definizioni, dimostrazioni ed esercizi, partendo dai q-numeri e q-binomi. Si definirà la q-derivazione. Poi vedremo le identità di Eulero, i q-esponenziali e le funzioni q-trigonometriche. Seguiranno la q-antiderivata e l'integrale di Jackson. Si vedrà la definizione della funzioni q-Gamma e q-Beta.
Nozioni di q-calcolo nell'ambito del quantum calculus / Sparavigna, A. C.. - ELETTRONICO. - (2021).
Titolo: | Nozioni di q-calcolo nell'ambito del quantum calculus | |
Autori: | ||
Data di pubblicazione: | 2021 | |
Citazione: | Nozioni di q-calcolo nell'ambito del quantum calculus / Sparavigna, A. C.. - ELETTRONICO. - (2021). | |
Abstract: | Il testo propone alcune nozioni di q-calcolo nell'ambito del quantum calculus. Si daranno definizioni, dimostrazioni ed esercizi, partendo dai q-numeri e q-binomi. Si definirà la q-derivazione. Poi vedremo le identità di Eulero, i q-esponenziali e le funzioni q-trigonometriche. Seguiranno la q-antiderivata e l'integrale di Jackson. Si vedrà la definizione della funzioni q-Gamma e q-Beta. | |
Handle: | http://hdl.handle.net/11583/2908271 | |
Appare nelle tipologie: | 5.15 Pubblicazione su portale |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
q-calculus 5 (4).pdf | 2a Post-print versione editoriale / Version of Record | ![]() | Visibile a tuttiVisualizza/Apri |
Utilizza questo identificativo per citare o creare un link a questo documento:
http://hdl.handle.net/11583/2908271
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.