In the first part of the paper we provide a survey of recent results concerning the problem of pointwise convergence of integral kernels in Feynman path integrals, obtained by means of time-frequency analysis techniques. We then focus on exceptional times, where the previous results do not hold, and we show that weaker forms of convergence still occur. In conclusion we offer some clues about possible physical interpretation of exceptional times.

On Exceptional Times for Pointwise Convergence of Integral Kernels in Feynman–Trotter Path Integrals / Feichtinger, H. G.; Nicola, F.; Trapasso, S. I.. - 43:(2021), pp. 293-311. [10.1007/978-3-030-61346-4_13]

On Exceptional Times for Pointwise Convergence of Integral Kernels in Feynman–Trotter Path Integrals

Nicola F.;Trapasso S. I.
2021

Abstract

In the first part of the paper we provide a survey of recent results concerning the problem of pointwise convergence of integral kernels in Feynman path integrals, obtained by means of time-frequency analysis techniques. We then focus on exceptional times, where the previous results do not hold, and we show that weaker forms of convergence still occur. In conclusion we offer some clues about possible physical interpretation of exceptional times.
978-3-030-61345-7
978-3-030-61346-4
Springer INdAM Series
File in questo prodotto:
File Dimensione Formato  
fnt except time revised4.pdf

embargo fino al 02/11/2022

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 277.51 kB
Formato Adobe PDF
277.51 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Feichtinger, Nicola, Trapasso - Chapter Anomalies 2021.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 259.62 kB
Formato Adobe PDF
259.62 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11583/2908113