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On exceptional times for pointwise convergence
of integral kernels in Feynman-Trotter path
integrals

Hans G. Feichtinger, Fabio Nicola, and S. Ivan Trapasso

Abstract In the first part of the paper we provide a survey of recent results con-
cerning the problem of pointwise convergence of integral kernels in Feynman path
integral, obtained by means of time-frequency analysis techniques. We then focus on
exceptional times, where the previous results do not hold, and we show that weaker
forms of convergence still occur. In conclusion we offer some clues about possible
physical interpretation of exceptional times.

1 Introduction

Integration over infinite-dimensional spaces of paths plays a relevant role in modern
quantum physics. This machinery first appeared in a 1948 paper [21] by Richard
Feynman, shortly followed by [22] where path integrals paved the way to the cel-
ebrated Feynman diagrams, hence to a completely new way to investigate field
theories.

Let us briefly recall the most important features of the functional integral formu-
lation of (non-relativistic) quantum mechanics. The interested reader may consult
the textbook [23] for a comprehensive introduction to the subject from a physical
perspective. Recall that the state of a particle inRd at time t ∈ R is represented by the
wave function ψ(t, x), (t, x) ∈ R×Rd , such that ψ(t, ·) ∈ L2(Rd). The time evolution
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of a state ϕ(x) at t = 0 is regulated by the Cauchy problem for the Schrödinger
equation: {

i~∂tψ = (H0 + V(x))ψ
ψ(0, x) = ϕ(x),

(1)

where 0 < ~ ≤ 1 is a parameter (representing the Planck constant), H0 = −~
24/2 is

the free particle Hamiltonian and V is a real-valued potential; we set m = 1 for the
mass of the particle. The mapU(t, s) : ψ(s, ·) 7→ ψ(t, ·), t, s ∈ R, is a unitary operator
on L2(Rd) and is called propagator or evolution operator; we set U(t) for U(t, 0).
Since U(t) is a linear operator we may formally represent it as an integral operator
with distribution kernel ut , namely

ψ(t, x) =
∫
Rd

ut (x, y)ϕ(y)dy.

The kernel ut (actually known as propagator in physics) is interpreted as the transition
amplitude from the position y at time 0 to the position x at time t. In his papers
Feynman essentially provided a recipe for how to compute this kernel, involving all
the possible interfering alternative paths from y to x that could be followed by the
particle. In particular, each path would contribute to the total probability amplitude
with a phase factor proportional to the action functional corresponding to the path:

S [γ] = S(t, 0, x, y) =
∫ t

s

L(γ(τ), Ûγ(τ))dτ,

where L is the Lagrangian of the corresponding classical system. In a nutshell, a
formal representation of the kernel is

ut (x, y) =
∫

e
i
~ S[γ]Dγ, (2)

underpinning some integration procedure over the infinite-dimensional space of
paths satisfying the conditions above. Notice that (a still formal) application of the
stationary phase principle shows that the semiclassical limit ~ → 0 selects the
classical trajectory, in according with the principle of stationary action of classical
mechanics.

1.1 The mathematics of path integrals

In spite of the popularity and the successful predictions of path integrals, it is not
clear what the meaning of (2) could be from a mathematical point of view. This is
in fact an open subfield of functional analysis and there have been several attempts
to provide a rigorous and satisfactory theory of path integrals with the support of
techniques ranging from infinite-dimensional analysis to operator theory, but also
from stochastics to geometry. We cannot hope to frame here more than seventy years
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of literature; we suggest the monographs [1, 27, 37, 39] as points of departure as well
as the article [2] for a broad overview.We remark that only in recent times techniques
from time-frequency analysis have been fruitfully used in the study of mathematical
path integrals, see for instance [41, 43, 44]; see also [50] for an expository paper on
the topic.

Among the several frameworks mentioned above we focus here on the so-called
sequential approach, introduced byNelson in [40]. The reasons behind this choice are
manifold; first, it is probably the mathematical scheme which best meets Feynman’s
original insight and some of its features are nowadays part of the custom in physics
literature, cf. [32, 38]. Moreover, the perturbative nature of this approach is very well
suited to certain function spaces and operators related to time-frequency analysis, as
will be elucidated later.

Nelson’s approach relies on two issues. Recall that the evolution operator for the
Schrödinger equation withV = 0, namelyU0(t) = e−

i
~ tH0 , H0 = −~

24/2, is a Fourier
multiplier; an explicit representation can be derived after standard computation (cf.
[46, Sec. IX.7]):

e−
i
~ tH0ϕ (x) =

1
(2πit~)d/2

∫
Rd

exp
(

i
~

|x − y |2

2t

)
ϕ(y)dy, ϕ ∈ S(Rd). (3)

The second ingredient is a well-known tool from the theory of operator semi-
groups. Under suitable conditions on the domain of H0 and on the potential V 1, the
Trotter product formula holds for the semigroup generated by H = H0 + V :

e−
i
~ t(H0+V ) = lim

n→∞

(
e−

i
~

t
n H0 e−

i
~

t
nV

)n
,

where the limit is intended in the strong topology of operators in L2(Rd). Combining
these two results gives that the complete propagator e−

i
~ tH can be expressed as limit

of integral operators (cf. [46, Thm. X.66]):

e−
i
~ t(H0+V )ϕ(x) = lim

n→∞

(
2π~i

t
n

)− nd
2

∫
Rnd

e
i
~ Sn(t;x0,...,xn−1,x)ϕ (x0) dx0 . . . dxn−1,

(4)
where we set

Sn (t; x0, . . . , xn−1, x) =
n∑

k=1

t
n

[
1
2

(
|xk − xk−1 |

t/n

)2
− V (xk)

]
, x0 = y, xn = x.

The role of the phase Sn (t; x0, . . . , xn) may be clarified by the following argument:
given the points x0, . . . , xn−1, x ∈ Rd , let γ be the polygonal path through the vertices
xk = γ (kt/n), k = 0, . . . , n, xn = x, parametrized as

1 For instance one may consider a potential V such that H0 + V is essentially self-adjoint on
D(H0) ∩ D(V ), cf. [45, Sec. VIII.8].
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γ (τ) = xk +
xk+1 − xk

t/n

(
τ − k

t
n

)
, τ ∈

[
k

t
n
, (k + 1)

t
n

]
, k = 0, . . . , n − 1.

(5)
Hence γ prescribes a classical motion with constant velocity along each segment.
The action functional for such path is given by

S [γ] =
n∑

k=1

1
2

t
n

(
|xk − xk−1 |

t/n

)2
−

∫ t

0
V(γ(τ))dτ.

According to Feynman’s heuristics, the relation in (4) should be interpreted as the
definition of an integral over all polygonal paths while Sn (x0, . . . , xn, t) is a Riemann-
like, finite-dimensional approximation of the action functional evaluated on them.
The regime n→ ∞ is then intuitively clear: the set of polygonal paths becomes the
set of all paths and we recover (2).

1.2 Convergence at the level of integral kernels

The sequential approach discussed above seems to suggest that path integral can be
made mathematically rigorous at the level of operators rather than integral kernels.
This remark is reinforced by the achievements of different mathematical theories
of path integrals relying on the standard operator-theoretic approach to quantum
mechanics. Consider for instance the so-called time slicing approximation approach
introduced by Fujiwara in celebrated papers like [25, 26] - see also the mono-
graph [27] for a systematic exposition; broadly speaking, the philosophy underlying
these works is to design sequences of finite-dimensional approximation operators on
L2(Rd) (in particular, oscillatory integral operators) and then prove convergence to
the exact propagator U(t) in some operator topology on L2.

Actually, there are good reasons for not being completely satisfied with this
state of affairs. The lesson of Feynman’s original formulation strongly motivates a
focus shift from operators to their kernels, in particular to the problem of pointwise
convergence of the integral kernels in (4) to the kernel ut of the propagator. This
may appear as an unaffordable problem in general since non-regular or even purely
distribution kernels may show up, thus the problem of convergence can be hard
or even pointless. A strong clue pointing in this direction comes from the already
mentioned papers by Fujiwara, where convergence in a finer topology at the level of
integral kernels is proved for sufficiently small time intervals and smooth potentials
with at most quadratic growth.

We describe below the recent results obtained by two of the authors in [43], where
techniques of time-frequency analysis are fruitfully used to prove pointwise conver-
gence of integral kernels in the framework provided by the sequential approach. In
contrast with the aforementioned results by Fujiwara we consider bounded potentials
(the minimal regularity assumption is continuity) and we obtain the desired conver-
gence for the kernels in suitable topologies which imply pointwise convergence. Our
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results are global in time, namely they hold for any fixed t ∈ R \ Ẽ , where Ẽ is a set
of exceptional times. We describe below the most important features of this set from
both the mathematical and physical points of view and provide explicit examples. For
the moment we confine ourselves to remark that exceptional times are to be expected:
recall that the involved kernels are in general tempered distributions in S′(Rd) in
view of the Schwartz kernel theorem and the problem of pointwise convergence
is well-posed only when the kernels are actually functions. One may still wonder
whether there is convergence at exceptional times in some weaker distribution sense.
We are able to prove global-in-time convergence in this fashion, again supported by
the framework of time-frequency analysis techniques and function spaces. In order
to precisely state and prove the claimed results we devote the next section to collect
some preparatory material.

2 Preliminaries

2.1 Notation

We set x2 = x · x, for x ∈ Rd , where x · y is the scalar product on Rd . The
Schwartz class is denoted by S(Rd), the space of tempered distributions by S′(Rd).
The brackets 〈 f , g〉 denote the extension to S′(Rd) × S(Rd) of the inner product
〈 f , g〉 =

∫
Rd

f (x)g(x)dx on L2(Rd), but also other related dualities described below.
The conjugate exponent p′ of p ∈ [1,∞] is defined by 1/p+1/p′ = 1. The symbol

. means that the underlying inequality holds up to a positive constant factor C > 0.
For any x ∈ Rd and s ∈ R we set 〈x〉s B (1 + |x |2)s/2. We choose the following
normalization for the Fourier transform:

F f (ξ) =
∫
Rd

e−2πix ·ξ f (x)dx, ξ ∈ Rd .

Wedefine the translation andmodulation operators: for any x, ξ ∈ Rd and f ∈ S(Rd),

(Tx f ) (y) B f (y − x),
(
Mξ f

)
(y) B e2πiξ ·y f (y).

These operators can be extended by duality on tempered distributions. The compo-
sition π(x, ξ) = MξTx constitutes a so-called time-frequency shift.

Given a normed linear space of distributions X ⊂ S′(Rd), we set

Xcomp B {u ∈ X : supp(u) is a compact subset of Rd},

Xloc B {u ∈ S′(Rd) : φu ∈ X ∀φ ∈ C∞c (R
d)}.

In the rest of the paper we set ~ = 1 for convenience, since we are not concerned
with semiclassical aspects.
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2.2 Modulation spaces

The short-time Fourier transform (STFT) of a tempered distribution f ∈ S′(Rd)
with respect to the window function g ∈ S(Rd) \ {0} is defined by

Vg f (x, ξ) B 〈 f , π(x, ξ)g〉 = F ( f · Txg)(ξ) =

∫
Rd

e−2πiy ·ξ f (y) g(y − x) dy. (6)

The monograph [28] contains a comprehensive treatment of the mathematical
properties of this time-frequency representation, especially those mentioned below.
We stress that the STFT is deeply connected with other well-known phase-space
transforms, in particular the Wigner distribution

W( f , g)(x, ξ) =
∫
Rd

e−2πiy ·ξ f
(
x +

y

2

)
g

(
x −

y

2

)
dy. (7)

Given a non-zero window g ∈ S(Rd), s ∈ R and 1 ≤ p, q ≤ ∞, the modulation
space Mp,q

s (R
d) consists of all tempered distributions f ∈ S′(Rd) such that Vg f ∈

Lp,q
s (R

2d) (mixed weighted Lebesgue space), that is:

‖ f ‖M p,q
s
= ‖Vg f ‖Lp,q

s
=

(∫
Rd

(∫
Rd
|Vg f (x, ξ)|p dx

)q/p
〈ξ〉qsdξ

)1/q

< ∞,

with trivial modification if p or q is∞. If p = q, we write Mp instead of Mp,p , while
for the unweighted case (s = 0) we set Mp,q

0 ≡ Mp,q .
It can be proved that Mp,q

s (R
d) is a Banach space whose definition does not

depend on the choice of the window g. We mention that many common function
spaces are intimately related with modulation spaces: for instance,

(i) M2(Rd) coincides with the Hilbert space L2(Rd);
(ii) M2

s (R
d) coincides with the usual L2-based Sobolev space Hs(Rd);

(iii) the following continuous embeddings with Lebesgue spaces hold:

Mp,q
r (R

d) ↪→ Lp(Rd) ↪→ Mp,q
s (R

d), r > d/q′ and s < −d/q.

In particular,
Mp,1(Rd) ↪→ Lp(Rd) ↪→ Mp,∞(Rd).

For these and other embeddings we address the reader to [13, 15, 16, 28].
We wish to focus on distinguished members of the family of modulation spaces.

The Banach-Gelfand triple (M1(Rd), L2(Rd), M∞(Rd)) proved to be a very fruitful
generalization of the standard triple (S(Rd), L2(Rd),S′(Rd)) for the purposes of
time-frequency analysis, see [3, 20, 35] for further details. The space M1(Rd) is also
known as theFeichtinger algebra [13] and it does enjoy a large number of particularly
nice properties. We stress that S(Rd) ⊂ M1(Rd) and L2(Rd) is the completion of
M1(Rd) with respect to ‖·‖L2 norm. Moreover (M1(Rd))′ = M∞(Rd) under the
duality
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〈 f , φ〉 =
∫
R2d

Vg f (z)Vgφ(z)dz, f ∈ M1(Rd), φ ∈ M∞(Rd),

for any g ∈ S(Rd)\ {0}, without loss of generality with ‖g‖2 = 1. Finally, M1(Rd) is
isometrically invariant under Fourier transform and arbitrary time-frequency shifts,
and the embedding M1(Rd) ↪→ Mp,q(Rd) hold for all 1 ≤ p, q ≤ ∞. An additional
benefit of this extended framework is that one may derive a streamlined and self-
consistent presentation of the mathematical foundations of signal analysis with a
limited amount of technicalities, cf. [19].

The role of (M1, L2, M∞) as a Gelfand triple is further reinforced by the Fe-
ichtinger kernel theorem [14, 17, 18, 7].

Theorem 1 (i) Every distribution k ∈ M∞(R2d) defines a bounded linear operator
T : M1(Rd) → M∞(Rd) according to

〈T f , g〉 = 〈k, g ⊗ f 〉, ∀ f , g ∈ M1(Rd),

with ‖T ‖M1→M∞ . ‖k ‖M∞ .
(ii) Any linear bounded operator T : M1(Rd) → M∞(Rd) arises in this way for a

unique kernel k ∈ M∞(R2d); moreover ‖k ‖M∞ . ‖T ‖M1→M∞ .

Another interesting modulation space is M∞,1(Rd), also known as the Sjöstrand
class since it was highlighted in [49] as an exotic symbol class still yielding bounded
pseudodifferential operators on L2(Rd) (see the next section for further details, also
[29, 31]). In order to specify the regularity of functions in this space recall the
definition of the Fourier-Lebesgue space: for s ∈ R we set

f ∈ F L1
s (R

d) ⇔ ‖ f ‖FL1
s
=

∫
Rd
|F f (ξ)| 〈ξ〉sdξ < ∞.

Proposition 1 ([28] and [44, Prop. 3.4])

1. M∞,1(Rd) ⊂ (F L1)loc(R
d) ∩ L∞(Rd) ⊂ C0(Rd) ∩ L∞(Rd).

2. (M∞,1)loc(R
d) = (F L1)loc(R

d) = (FM)loc(R
d), where FM(Rd) is the space

of Fourier transforms of (finite) complex measures on Rd .
3. FM(Rd) ⊂ M∞,1(Rd).

The equality (F L1)loc(R
d) = (FM)loc(R

d) is an immediate consequence of the
fact that L1(Rd) is an ideal in the convolution algebraM(Rd).

Moreover, M∞,1(Rd) is a Banach algebra under pointwise product. In fact, precise
conditions are known on p, q and s in order for Mp,q

s to be a Banach algebra with
respect to pointwise multiplication.

Proposition 2 ([47, Thm. 3.5 and Cor. 2.10])
Let 1 ≤ p, q ≤ ∞ and s ∈ R. The following facts are equivalent.

(i) Mp,q
s (R

d) is a Banach algebra for pointwise multiplication2.

2 To be precise, we provide conditions under which the embedding M
p,q
s · M

p,q
s ↪→ M

p,q
s is

continuous; this means that the algebra property holds up to a constant. It is a rather standard result
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(ii) Mp,q
s (R

d) ↪→ L∞(Rd).
(iii) Either s = 0 and q = 1 or s > d/q′.
We deduce that also the modulation spaces M∞s (R

d) with s > d are Banach algebras
for pointwise multiplication. In particular we have M∞s (R

d) ↪→ M∞,1(Rd) for s > d
and the following characterization holds:

C∞b (R
d) B

{
f ∈ C∞(Rd) : |∂α f | ≤ Cα ∀α ∈ Nd

}
=

⋂
s≥0

M∞s (R
d); (8)

see [30, Lemma 6.1] for further details.

2.3 Weyl operators

The success of time-frequency analysis in the theory of pseudodifferential operators
mainly relies on the following equality:

〈σw f , g〉 = 〈σ,W(g, f )〉, ∀ f , g ∈ S(Rd), (9)

where σ ∈ S′(R2d) is the symbol of the Weyl operator σw : S(Rd) → S′(Rd),
which can be formally represented as

σw f (x) B
∫
R2d

e2πi(x−y)·ξσ
( x + y

2
, ξ

)
f (y)dydξ,

while W(g, f ) is the Wigner transform defined in (7). The main benefit of a time-
frequency approach to Weyl operators is that very general symbol classes may be
taken into account, in particular modulation spaces - recall that classical symbol
classes are usually defined by means of decay/smoothness conditions, such as the
Hördmander classes Sm

ρ,δ(R
2d) [34]. Moreover, most of the properties of σw are

intimately connected to those of the Wigner transform, the latter being very well
established nowadays [11, 28].

The composition of Weyl transforms induces a bilinear form on symbols, the
so-called twisted product: this means that the composition of two operators σw ◦ ρw

is in fact a Weyl operator with special symbol denoted by σ#ρ. Explicit formulas
for σ#ρ are known (cf. [51]) but we are more interested in the algebra structure
induced on symbol spaces. It is indeed a peculiar feature of M∞,1(R2d), as well as
of M∞s (R

2d) with s > 2d, to enjoy a double Banach algebra structure:
• a commutative one with respect to the pointwise multiplication as a consequence
of Proposition 2;

• a non-commutative onewith respect to the twisted product of symbols ([30, 49]);
for instance, σ, ρ ∈ M∞,1(R2d) =⇒ σ#ρ ∈ M∞,1(R2d).

that that there exists an equivalent norm for which the previous estimate holds withC = 1 (cf. [48,
Thm. 10.2]). This setting will be tacitly assumed whenever concerned with Banach algebras from
now on.
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Furthermore, it turns out that the latter algebraic structure can be related to a char-
acterizing sparse behaviour satisfied by pseudodifferential operators with symbols
in those spaces, the so-called almost diagonalization property with respect to time-
frequency shifts; it can be proved that σ ∈ M∞s (R

2d) if and only if, for some (hence
any) g ∈ S(Rd) \ {0},

|〈σwπ(z)g, π(w)g〉| ≤ C〈w − z〉−s, z,w ∈ R2d .

In a similar fashion, σ ∈ M∞,1(R2d) if and only if there exists H ∈ L1(R2d) such
that

|〈σwπ(z)g, π(w)g〉| ≤ H(w − z), z,w ∈ R2d .

The reader may consult [4, 5, 6, 10, 29, 30] for further details on this topic.

3 Pointwise convergence of integral kernels

The main results in [44] require us to consider a slightly generalized version of the
free Hamiltonian operator H0 in (1). Let a be a quadratic homogeneous polynomial
on R2d , namely

a(x, ξ) =
1
2

x · Ax + ξ · Bx +
1
2
ξ · Cξ,

for some symmetric matrices A,C ∈ Rd×d and B ∈ Rd×d . The solution of (1) with
H0 = aw (the Weyl transform of a) and V = 0 is given by

ψ(t, x) = e−itH0ϕ(x) = µ(At )ϕ(x),

where µ(At ) is a metaplectic operator - see [11, Sec. 15.1.3] and also [8, 24] for a
complete derivation of this classic result. A precise characterization of metaplectic
operators would lead us too far, hence we just outline their main features. First, recall
that the phase-space flow governed by the Hamilton equations3

2π Ûz = J∇za(z) = A, A =

(
B C
−A −B>

)
,

defines a mapping

R 3 t 7→ At = e(t/2π)A =
(

At Bt

Ct Dt

)
∈ Sp(d,R). (10)

In sloppy terms, any symplectic matrix S ∈ Sp(d,R) is associated with a unitary
bounded operator µ(S) on L2(Rd) which satisfies the intertwining property

µ(S)−1σwµ(S) = (σ ◦ S)w, σ ∈ S′(R2d).

3 The factor 2π is a consequence of the normalization of the Fourier transform adopted in the paper.
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In particular, the classical flowAt is associated (up to a complex phase factor) with
a family of unitary operators on L2(Rd) (for details see [28], Thm. 9.4.2) An explicit
formula for µ(At )may be provided in some special cases: for all t ∈ R such thatAt

is a free symplectic matrix, namely such that the upper-right block Bt is invertible,
the corresponding metaplectic operator may be represented as a quadratic Fourier
transform [11, Sec. 7.2.2], namely

µ(At )ϕ(x) = ct |det Bt |
−1/2

∫
Rd

e2πiΦt (x, ξ)ϕ(y)dy, ϕ ∈ S(Rd), (11)

for suitable ct ∈ C, |ct | = 1, where

Φt (x, y) =
1
2

x · DtB−1
t x − y · B−1

t x +
1
2
y · B−1

t At y, x, y ∈ Rd . (12)

This representation of µ(At ) is a main ingredient of our results, hence we stress that
it does hold for any t ∈ R \ Ẽ , where we define the set of exceptional times as

Ẽ = {t ∈ R : det Bt = 0}. (13)

Some of the properties of this set can be immediately deduced from the fact that
it is indeed the zero set of an analytic function: apart from the case Ẽ = R (which
trivially happens when H = 0), Ẽ is a discrete (hence at most countable) subset
of R which always includes t = 0 - in particular Ẽ = {0} in the case of the free
Schrödinger equation (V = 0).

We nowapply a version of Trotter formula from the theory of operator semigroups.
It is known that H0 = aw is a self-adjoint operator on the maximal domain (see [33])

D (H0) = {ψ ∈ L2(Rd) : H0ψ ∈ L2(Rd)}.

For our purposes it is enough to assume that V is a bounded perturbation of H0,
namely V ∈ B(L2(Rd)); notice that V ∈ L∞(Rd) is then a suitable choice, even for
possibly complex-valued potentials.

Then, we have (cf. for instance [12, Cor. 2.7 and Ex. 2.9])

e−it(H0+V ) = lim
n→∞

En(t), En(t) =
(
e−i

t
n H0 e−i

t
nV

)n
, (14)

where the convergence is intended in the strong operator topology in L2(Rd). Let
us denote by en,t (x, y) the distribution kernel of En(t) and by ut (x, y) that of U(t) =
e−it(H0+V ).

We assume V ∈ L∞(Rd), and we tune its regularity as follows. In view of the
discussion on modulation spaces in the previous section, we have available a scale
of decreasing regularity spaces.

1. The best option for our purposes is given by C∞
b
(Rd), the space of smooth

bounded functions with bounded derivatives of any order.
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2. At an intermediate level we have the (scale of) modulation spaces M∞s (R
d),

s > d, which contain bounded continuous functions becoming less regular
as s ↘ d - the parameter s can be thought of as a measure of (fractional)
differentiability.

3. We finally have a maximal space M∞,1(Rd), where the partial regularity of
the previous level is completely lost. It is still a space of bounded continuous
functions which locally enjoy the mild regularity of the Fourier transform of a
L1 function.

Let us first state ourmain result at the intermediate regularity encoded by M∞s (R
d).

Theorem 2 Let H0 = aw as discussed above and V ∈ M∞s (R
d), with s > 2d. LetAt

denote the classical flow associated with H0 as in (10). For any t ∈ R \ Ẽ:

1. the distributions e−2πiΦt en,t , n ≥ 1, and e−2πiΦt ut belong to a bounded subset
of M∞s (R

2d);
2. en,t → ut in

(
F L1

r

)
loc
(R2d) for any 0 < r < s−2d, hence uniformly on compact

subsets.

The first claim ensures the kernel convergence problem is well posed under
the given assumptions, since the kernels are indeed bounded continuous functions,
while the second one characterizes the regularity at which convergence occurs -
which clearly implies pointwise convergence.

We expect to improve the convergence result in the smooth context in view of the
characterization given in (8).

Corollary 1 Let H0 = aw as discussed above and V ∈ C∞
b
(Rd). Let At denote the

classical flow associated with H0 as in (10). For any t ∈ R \ Ẽ:

1. the distributions e−2πiΦt en,t , n ≥ 1, and e−2πiΦt ut belong to a bounded subset
of C∞

b
(R2d);

2. en,t → ut in C∞(R2d), hence uniformly on compact subsets together with any
derivatives.

This result should be compared with the results by Fujiwara in [26], where
convergence at the level of kernels in C∞

b
-sense for short times was proved. In spite

of different assumptions and approximation schemes, we stress that our result is
global in time.

We conclude with a convergence result in the same spirit, for potentials in the
Sjöstrand class.

Theorem 3 Let H0 = aw as discussed above and V ∈ M∞,1(Rd). Let At denote the
classical flow associated with H0 as in (10). For any t ∈ R \ Ẽ:

1. the distributions e−2πiΦt en,t , n ≥ 1, and e−2πiΦt ut belong to a bounded subset
of M∞,1(R2d);

2. en,t → ut in
(
F L1

)
loc
(R2d), hence uniformly on compact subsets.
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Westress that a typical potential setting in the papers byAlbeverio and coauthors is
“harmonic oscillator plus a bounded perturbation”, the latter in the formof the Fourier
transform of a (finite) complex measure on Rd - cf. [1] and the references therein.
While those results rely on completely different techniques (in particular, infinite-
dimensional oscillatory integral operators), in view of the embedding FM(Rd) ⊂
M∞,1(Rd) proved in [43, Prop. 3.4] we are able to cover this class of potentials too.

In addition to the regularity properties mentioned insofar, our choice of modu-
lation space is particularly well suited to the problem in view of the rich algebraic
structure discussed in Section 2. The key of the proofs is that for t ∈ R \ Ẽ the
approximate operator En(t) can be expressed in integral form and a manageable
form of the kernel en,t can be derived. In particular, with the help of some technical
lemmas we are able to write

En (t) ϕ(x) = aw
n,t µ (At ) ϕ(x)

= c(t) |det Bt |
−1/2

∫
Rd

e2πiΦt (x,y)ãn,t (x, y) ϕ (y) dy, (15)

where Φt is as in (12) and {an,t }, {ãn,t } ⊂ M∞s (R
2d) are bounded sequences of

symbols for fixed t ∈ R \ Ẽ .

4 Results on integral kernels at exceptional times

The occurrence of a set of exceptional times in Theorems 2 and 3 comes not as a
surprise from a mathematical point of view: it may happen indeed that the integral
kernel of the evolution operator degenerates into a distribution. A standard example
of this phenomenon is provided by the harmonic oscillator, namely

i∂tψ = −
1

4π
4ψ + π |x |2ψ.

The integral kernel of the corresponding evolution operator is known as the Mehler
kernel and can be explicitly characterized [11, 36]: for k ∈ Z,

ut (x, y) =

{
c(k)| sin t |−d/2 exp

(
πi x

2+y2

tan t − 2πi x ·y
sin t

)
(πk < t < π(k + 1))

c′(k)δ((−1)k x − y) (t = kπ)
, (16)

for suitable phase factors c(k), c′(k) ∈ C. This shows the expected degenerate be-
haviour at integer multiples of π, which is consistent with the fact that the associated
classical flow At is given by

At =

(
(cos t)I (sin t)I
−(sin t)I (cos t)I

)
,
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where I ∈ Rd×d is the identity matrix. Hence we retrieve Ẽ = {t ∈ R : sin t = 0} =
{kπ : k ∈ Z}.

We may wonder whether convergence of integral kernels still occurs in some
distributional sense, hopefully better than the broadest one (that is S′(R2d)). In view
of the discussion in Section 2 on the triple (M1, L2, M∞), a suitable setting may
be provided by M∞. We have indeed a general result for the kernels of strongly
convergent sequences of operators in L2.

Theorem 4 Let {An} ⊂ B(L2(Rd)), n ∈ N, be a sequence of bounded linear
operators on L2(Rd) with associated distribution kernels {an} ⊂ S′(R2d), and
A ∈ B(L2(Rd)) with distribution kernel a ∈ S′(R2d). Assume that An → A in the
strong operator topology. Then:

1. an, a ∈ M∞(R2d), n ∈ N;
2. an → a in the weak-* topology on M∞(R2d).

In particular we have an → a in F L∞loc(R
2d), the latter space endowed with the

topology σ(F L∞loc(R
2d), F L1

comp(R
2d)).

Proof We have that {An} is a bounded sequence in B(L2(Rd)) as a consequence
of the uniform boundedness principle, hence also in B(M1(Rd), M∞(Rd)). The
Feichtinger kernel theorem (Theorem 1) yields that the kernels an belong to a
bounded subset of M∞(R2d). Similarly, A ∈ B(L2(Rd)) ⇒ a ∈ M∞(R2d). For the
second part of the claim we remark that An → A in the strong operator topology
implies that an → a inS′(R2d). Therefore, for any fixed non-zero g ∈ S(Rd)we have
Vgan → Vga pointwise in R2d . Moreover, we have the estimate |Vgan(x, ξ)| ≤ C, for
some constant C > 0 independent of n by the first part of the claim. Hence, for any
ϕ ∈ M1(Rd) we have

〈an, ϕ〉 =
∫
R2d

Vgan(x, ξ)Vgϕ(x, ξ)dxdξ

→

∫
R2d

Vga(x, ξ)Vgϕ(x, ξ)dxdξ = 〈a, ϕ〉,

by the dominated convergence theorem. �

It would be interesting to prove the boundedness of an in M∞(R2d) in Theorem 4
without using the uniformboundedness principle, although it could be not immediate.

A straightforward application of this result allows us to prove global-in-time
convergence of integral kernels, although in a weaker sense than before.

Corollary 2 Assume V ∈ L∞(Rd). Let en,t ∈ S′(R2d) be the distribution kernel of
the Feynman-Trotter parametrix En(t) in (14) and ut ∈ S′(R2d) be the kernel of the
Schrödinger evolution operator U(t) associated with the Cauchy problem (1). For
any n ∈ N and t ∈ R we have en,t, u ∈ M∞(R2d). Moreover, en,t → ut in the weak-*
topology on M∞(R2d) for any fixed t ∈ R.
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For more regular potentials we expect that the conclusion of Corollary 2 can
be improved. Let us first provide a version of the Trotter formula for potentials in
M∞,1(Rd), with strong convergence on M1(Rd).

Theorem 5 AssumeV ∈ M∞,1(Rd). Let {En(t)} be the sequence of Feynman-Trotter
parametrices defined in (14) and U(t) be the Schrödinger evolution operator U(t)
associated with the Cauchy problem (1). For any fixed t ∈ R we have

lim
n→∞

En(t) = U(t), lim
n→∞

En(t)∗ = U(t)∗

in the strong topology of operators acting on M1(Rd).

Proof We prove that En(t) → U(t) strongly in B(M1(Rd)); the claim concerning
adjoint operators follows by similar arguments since U(t)∗ = U(−t) and En(t)∗ =(
ei

t
nV ei

t
n H0

)n
.

As already observed, we know that the operator −iH0 with domain D(H0) =
{ϕ ∈ L2(Rd) : H0ϕ ∈ L2(Rd)} is self-adjoint ([33]). Let U0(t) = e−itH0 be the
corresponding strongly continuous unitary group on L2(Rd). The well-posedness
of the Schrödinger equation i∂tψ = H0ψ in M1(Rd) (see e.g. [9]) implies that the
restriction of U0(t) to M1(Rd) defines a strongly continuous group on M1(Rd),
its generator being the restriction of H0 to the subspace {ϕ ∈ M1(Rd) : H0ϕ ∈
M1(Rd)}, as a consequence of known results on subspace semigroups, cf. [12,
Chapter 2, Sec. 2.3]. Since the pointwise multiplication by V ∈ M∞,1(Rd) defines
a bounded operator on M1(Rd), the desired result follows from the classical Trotter
formula ([12, Cor. 2.7 and Ex. 2.9]). �

We provide an equivalent formulation of the previous result for the corresponding
integral kernels, which is indeed a partial counterpart of the pointwise convergence
results of Section 3.

Theorem 6 Under the same assumptions of Theorem 3, for all t ∈ R and ϕ ∈
M1(Rd), the functions

〈en,t (x, ·), ϕ〉, 〈en,t (·, y), ϕ〉, 〈ut (x, ·), ϕ〉, 〈ut (·, y), ϕ〉

belong to M1(Rd).
Moreover

〈en,t (x, ·), ϕ〉 → 〈ut (x, ·), ϕ〉, 〈en,t (·, y), ϕ〉 → 〈ut (·, y), ϕ〉

in M1(Rd), hence in Lp(Rd) for every 1 ≤ p ≤ ∞.

The last conclusion follows from the continuous embedding M1(Rd) ↪→ Lp(Rd),
for every 1 ≤ p ≤ ∞.

Remark 1 We expect other improvements of Theorem 4 to hold in the case where
An = En(t), A = U(t). In particular, convergence result for the corresponding
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integral kernels could be investigated in the context of mixed modulation spaces
and generalized kernel theorems in the spirit of [7]. We will not engage in such
formulation here in order to avoid quite technical discussions.

5 Physics at exceptional times

In spite of the attempts to shed light on the nature of exceptional times and the partial
results in the previous section, a physical interpretation of exceptional times is still
not clear at the moment. This non-trivial question also appears in the form of an
enigmatic exercise in the textbook [23, Problem 3-1] by Feynman and Hibbs. While
dimensional analysis and heuristic arguments may provide some hints, a precise
answer still seems to be missing.

We give our contribution to this discussionwith a short argument which elucidates
the nature of exceptional times in terms of measurable quantities. Recall that B(u, r)
denotes the ball with center u ∈ Rd and radius r > 0 in Rd . Following the custom in
physics we adopt below the bra-ket notation, and we identify states with their wave
functions in the position representation.

Fix x0, y0 ∈ R
d and a, b > 0, and consider the normalised wave-packets

|A〉 =
1√

|B(y0, a)|
1B(y0,a), |B〉 =

1√
|B(x0, b)|

1B(x0,b).

The corresponding transition amplitude from the state |A〉 to |B〉 under the Hamil-
tonian H = H0 + V as in Theorem 3, namely

I = I(t, x0, y0, a, b) = 〈B |U(t)|A〉, t ∈ R,

trivially satisfies the estimate

|I(t, x0, y0, a, b)| ≤ 1, ∀t ∈ R, x0, y0 ∈ R
d, a, b > 0.

This bound cannot be improved at exceptional times: consider for instance the case
where t = 0, x0 = y0 and a = b, which yields I = 1. Nevertheless, we have the
following result.

Proposition 3 Under the same assumptions of Theorem 3, for all t ∈ R \ Ẽ and
x0, y0 ∈ R

d we have

lim
a,b→0

I(t, x0, y0, a, b)
(ab)d/2

= Cut (x0, y0),

where C = C(d) = |B(0, 1)|.

Proof An explicit computation yields
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I(t, x0, y0, a, b)
C(ab)d/2

=
1

C2(ab)d

∫
B(x0,b)

∫
B(y0,a)

ut (x, y)dydx,

and the conclusion follows by the continuity of ut (x, y) in R2d , because ut ∈(
F L1)

loc(R
2d) for t ∈ R \ Ẽ by Theorem 3. �

This result shows that while |I | ≤ 1 in general, for a non-exceptional time t ∈ R\Ẽ
we have that |I | ∼ (ab)d/2 as a, b → 0. In particular |I | → 0 as a, b → 0 except
(possibly) for exceptional times.
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