An historical overview is presented concerning the theory of shell structures and thin domes. Early conjectures proposed, among others, by French, German, and Russian Authors are discussed. Static and kinematic matrix operator equations are formulated explicitly in the case of shells of revolution and thin domes. It is realized how the static and kinematic matrix operators are one the adjoint of the other, and, on the other hand, it can be rigorously demonstrated through the definition of stiffness matrix and the application of virtual work principle. In this context, any possible omission present in the previous approaches becomes evident. As regards thin shells of revolution (thin domes), the elastic problem results to be internally statically-determinate, in analogy to the case of curved beams, being characterized by a system of two equilibrium equations in two unknowns. Thus, the elastic solution can be obtained just based on the equilibrium equations and independently of the shape of the membrane itself. The same cannot be affirmed for the unidimensional elements without flexural stiffness (ropes). Generally speaking, the static problem of elastic domes is governed by two parameters, the constraint reactions being assumed to be tangential to meridians at the dome edges: the shallowness ratio and the thickness of the dome. On the other hand, when the dome thickness tends to zero, the funicularity emerges and prevails, independently of the shallowness ratio or the shape of the dome. When the thickness is finite, an optimal shape is demonstrated to exist, which minimizes the flexural regime if compared to the membrane one.

Funicularity in elastic domes: Coupled effects of shape and thickness / Accornero, F.; Carpinteri, A.. - In: CURVED AND LAYERED STRUCTURES. - ISSN 2353-7396. - STAMPA. - 8:1(2021), pp. 181-187. [10.1515/cls-2021-0017]

Funicularity in elastic domes: Coupled effects of shape and thickness

Accornero F.;Carpinteri A.
2021

Abstract

An historical overview is presented concerning the theory of shell structures and thin domes. Early conjectures proposed, among others, by French, German, and Russian Authors are discussed. Static and kinematic matrix operator equations are formulated explicitly in the case of shells of revolution and thin domes. It is realized how the static and kinematic matrix operators are one the adjoint of the other, and, on the other hand, it can be rigorously demonstrated through the definition of stiffness matrix and the application of virtual work principle. In this context, any possible omission present in the previous approaches becomes evident. As regards thin shells of revolution (thin domes), the elastic problem results to be internally statically-determinate, in analogy to the case of curved beams, being characterized by a system of two equilibrium equations in two unknowns. Thus, the elastic solution can be obtained just based on the equilibrium equations and independently of the shape of the membrane itself. The same cannot be affirmed for the unidimensional elements without flexural stiffness (ropes). Generally speaking, the static problem of elastic domes is governed by two parameters, the constraint reactions being assumed to be tangential to meridians at the dome edges: the shallowness ratio and the thickness of the dome. On the other hand, when the dome thickness tends to zero, the funicularity emerges and prevails, independently of the shallowness ratio or the shape of the dome. When the thickness is finite, an optimal shape is demonstrated to exist, which minimizes the flexural regime if compared to the membrane one.
File in questo prodotto:
File Dimensione Formato  
CLS_2021.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 659.39 kB
Formato Adobe PDF
659.39 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2904772