The design of multi-stimuli-responsive vehicles for the controlled and localized release of drugs is a challenging issue increasingly catching the attention of many research groups working on the advanced treatment of hard-to-close wounds. In this work, a thermo- and pH-responsive hydrogel (P-CHP407) was prepared from an ad hoc synthesized amphiphilic poly(ether urethane) (CHP407) exposing a significant amount of –COOH groups (8.8 ± 0.9 nmol/gpolymer). The exposure of acid moieties in P-CHP407 hydrogel led to slightly lower initial gelation temperature (12.1 °C vs. 14.6 °C, respectively) and gelation rate than CHP407 hydrogel, as rheologically assessed. Nanoscale hydrogel characterization by Low Field NMR (LF-NMR) spectroscopy suggested that the presence of carboxylic groups in P-CHP407 caused the formation of bigger micelles with a thicker hydrated shell than CHP407 hydrogels, as further proved by Dynamic Light Scattering analyses. In addition, P-CHP407 hydrogel showed improved capability to change its internal pH compared to CHP407 one when incubated with an alkaline buffer (pH 8) (e.g., pHchange_5min = 3.76 and 1.32, respectively). Moreover, LF-NMR characterization suggested a stronger alkaline-pH-induced interaction of water molecules with micelles exposing –COOH groups. Lastly, the hydrogels were found biocompatible according to ISO 10993 and able to load and release Ibuprofen: delivery kinetics of Ibuprofen was enhanced by P-CHP407 hydrogels at alkaline pH, suggesting their potential use as smart delivery systems in the treatment of chronic infected wounds.

Dual stimuli-responsive polyurethane-based hydrogels as smart drug delivery carriers for the advanced treatment of chronic skin wounds / Laurano, Rossella; Boffito, Monica; Abrami, Michela; Grassi, Mario; Zoso, Alice; Chiono, Valeria; Ciardelli, Gianluca. - In: BIOACTIVE MATERIALS. - ISSN 2452-199X. - ELETTRONICO. - 6:9(2021), pp. 3013-3024. [10.1016/j.bioactmat.2021.01.003]

Dual stimuli-responsive polyurethane-based hydrogels as smart drug delivery carriers for the advanced treatment of chronic skin wounds

Rossella Laurano;Monica Boffito;Alice Zoso;Valeria Chiono;Gianluca Ciardelli
2021

Abstract

The design of multi-stimuli-responsive vehicles for the controlled and localized release of drugs is a challenging issue increasingly catching the attention of many research groups working on the advanced treatment of hard-to-close wounds. In this work, a thermo- and pH-responsive hydrogel (P-CHP407) was prepared from an ad hoc synthesized amphiphilic poly(ether urethane) (CHP407) exposing a significant amount of –COOH groups (8.8 ± 0.9 nmol/gpolymer). The exposure of acid moieties in P-CHP407 hydrogel led to slightly lower initial gelation temperature (12.1 °C vs. 14.6 °C, respectively) and gelation rate than CHP407 hydrogel, as rheologically assessed. Nanoscale hydrogel characterization by Low Field NMR (LF-NMR) spectroscopy suggested that the presence of carboxylic groups in P-CHP407 caused the formation of bigger micelles with a thicker hydrated shell than CHP407 hydrogels, as further proved by Dynamic Light Scattering analyses. In addition, P-CHP407 hydrogel showed improved capability to change its internal pH compared to CHP407 one when incubated with an alkaline buffer (pH 8) (e.g., pHchange_5min = 3.76 and 1.32, respectively). Moreover, LF-NMR characterization suggested a stronger alkaline-pH-induced interaction of water molecules with micelles exposing –COOH groups. Lastly, the hydrogels were found biocompatible according to ISO 10993 and able to load and release Ibuprofen: delivery kinetics of Ibuprofen was enhanced by P-CHP407 hydrogels at alkaline pH, suggesting their potential use as smart delivery systems in the treatment of chronic infected wounds.
File in questo prodotto:
File Dimensione Formato  
Supplementary_Laurano Bioactive Materials_2021.pdf

accesso aperto

Descrizione: Supplementary data
Tipologia: Altro materiale allegato
Licenza: Creative commons
Dimensione 1.36 MB
Formato Adobe PDF
1.36 MB Adobe PDF Visualizza/Apri
Dual stimuli-responsive polyurethane-based hydrogels as smart drug delivery carriers for the advanced treatment of chronic skin wounds _ Elsevier Enhanced Reader.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 7.06 MB
Formato Adobe PDF
7.06 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2902354