Persistent homology is a powerful notion rooted in topological data analysis which allows for retrieving the essential topological features of an object. The attention on persistent homology is constantly growing in a large number of application domains, such as biology and chemistry, astrophysics, automatic classification of images, sensor and social network analysis. Thus, an increasing number of researchers is now approaching to persistent homology as a tool to be used in their research activity. At the same time, the literature lacks of tools for introducing beginners to this topic, especially if they do not have a strong mathematical background in algebraic topology. We propose here two complementary tools which meet this requirement. The first one is a web-based user-guide equipped with interactive examples to facilitate the comprehension of the notions at the basis of persistent homology. The second one is an interactive tool, with a specific focus on shape analysis, developed for studying persistence pairs by visualizing them directly on the input complex.
Persistent homology: A step-by-step introduction for newcomers / Fugacci, U.; Scaramuccia, S.; Iuricich, F.; de Floriani, L.. - ELETTRONICO. - (2016), pp. 1-10. (Intervento presentato al convegno 2016 Italian Chapter Conference - Smart Tools and Apps in Computer Graphics, STAG 2016 tenutosi a ita nel 2016) [10.2312/stag.20161358].
Persistent homology: A step-by-step introduction for newcomers
Fugacci U.;Scaramuccia S.;
2016
Abstract
Persistent homology is a powerful notion rooted in topological data analysis which allows for retrieving the essential topological features of an object. The attention on persistent homology is constantly growing in a large number of application domains, such as biology and chemistry, astrophysics, automatic classification of images, sensor and social network analysis. Thus, an increasing number of researchers is now approaching to persistent homology as a tool to be used in their research activity. At the same time, the literature lacks of tools for introducing beginners to this topic, especially if they do not have a strong mathematical background in algebraic topology. We propose here two complementary tools which meet this requirement. The first one is a web-based user-guide equipped with interactive examples to facilitate the comprehension of the notions at the basis of persistent homology. The second one is an interactive tool, with a specific focus on shape analysis, developed for studying persistence pairs by visualizing them directly on the input complex.File | Dimensione | Formato | |
---|---|---|---|
stag2016.pdf
non disponibili
Descrizione: Articolo principale
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.43 MB
Formato
Adobe PDF
|
1.43 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2884476