A practical number is a positive integer n such that all positive integers less than n can be written as a sum of distinct divisors of n. Leonetti and Sanna proved that, as x → +∞, the central binomial coefficient (Figure presented.) is a practical number for all positive integers n ≤ x but at most O(x0.88097) exceptions. We improve this result by reducing the number of exceptions to exp (C(log x)4/5 log log x), where C > 0 is a constant.

Practical central binomial coefficients / Sanna, Carlo. - In: QUAESTIONES MATHEMATICAE. - ISSN 1607-3606. - ELETTRONICO. - 44:9(2021), pp. 1141-1144. [10.2989/16073606.2020.1775156]

Practical central binomial coefficients

Carlo Sanna
2021

Abstract

A practical number is a positive integer n such that all positive integers less than n can be written as a sum of distinct divisors of n. Leonetti and Sanna proved that, as x → +∞, the central binomial coefficient (Figure presented.) is a practical number for all positive integers n ≤ x but at most O(x0.88097) exceptions. We improve this result by reducing the number of exceptions to exp (C(log x)4/5 log log x), where C > 0 is a constant.
File in questo prodotto:
File Dimensione Formato  
temp.pdf

accesso aperto

Descrizione: pre print autore
Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 259.17 kB
Formato Adobe PDF
259.17 kB Adobe PDF Visualizza/Apri
Practical central binomial coefficients.pdf

accesso riservato

Descrizione: Articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 368.37 kB
Formato Adobe PDF
368.37 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2883058