A practical number is a positive integer n such that all positive integers less than n can be written as a sum of distinct divisors of n. Leonetti and Sanna proved that, as x → +∞, the central binomial coefficient (Figure presented.) is a practical number for all positive integers n ≤ x but at most O(x0.88097) exceptions. We improve this result by reducing the number of exceptions to exp (C(log x)4/5 log log x), where C > 0 is a constant.
Practical central binomial coefficients / Sanna, Carlo. - In: QUAESTIONES MATHEMATICAE. - ISSN 1607-3606. - ELETTRONICO. - 44:9(2021), pp. 1141-1144. [10.2989/16073606.2020.1775156]
Practical central binomial coefficients
Carlo Sanna
2021
Abstract
A practical number is a positive integer n such that all positive integers less than n can be written as a sum of distinct divisors of n. Leonetti and Sanna proved that, as x → +∞, the central binomial coefficient (Figure presented.) is a practical number for all positive integers n ≤ x but at most O(x0.88097) exceptions. We improve this result by reducing the number of exceptions to exp (C(log x)4/5 log log x), where C > 0 is a constant.File | Dimensione | Formato | |
---|---|---|---|
temp.pdf
accesso aperto
Descrizione: pre print autore
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
259.17 kB
Formato
Adobe PDF
|
259.17 kB | Adobe PDF | Visualizza/Apri |
Practical central binomial coefficients.pdf
accesso riservato
Descrizione: Articolo principale
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
368.37 kB
Formato
Adobe PDF
|
368.37 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2883058