POLITECNICO DI TORINO

Repository ISTITUZIONALE

Practical central binomial coefficients

Original
Practical central binomial coefficients / Sanna, Carlo. - In: QUAESTIONES MATHEMATICAE. - ISSN 1607-3606. -
ELETTRONICO. - 44:9(2022), pp. 1141-1144. [10.2989/16073606.2020.1775156]

Availability:

This version is available at: 11583/2883058 since: 2021-12-21T16:42:50Z

Publisher:
Taylor and Francis

Published
DOI:10.2989/16073606.2020.1775156

Terms of use.

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright
(Article begins on next page)

PRACTICAL CENTRAL BINOMIAL COEFFICIENTS

CARLO SANNA ${ }^{\dagger}$

Abstract

A practical number is a positive integer n such that all positive integers less than n can be written as a sum of distinct divisors of n. Leonetti and Sanna proved that, as $x \rightarrow+\infty$, the central binomial coefficient $\binom{2 n}{n}$ is a practical number for all positive integers $n \leq x$ but at most $O\left(x^{0.88097}\right)$ exceptions. We improve this result by reducing the number of exceptions to $\exp \left(C(\log x)^{4 / 5} \log \log x\right)$, where $C>0$ is a constant.

1. Introduction

A practical number is a positive integer n such that all positive integers less than n can be written as a sum of distinct divisors of n. Practical numbers were defined by Srinivasan [15], althought they were already used by Fibonacci to decompose rational numbers as sums of unit fractions [12, pag. 121]. Estimates for the counting function of practical numbers were given by Hausman and Shapiro [3], Tenenbaum [16], Margenstern [8], Saias [13], and, lastly, Weingartner [17], who proved that the number of practical numbers up to x is asymptotic to $c x / \log x$, as $x \rightarrow+\infty$, where $c=1.33607 \ldots$ [18], settling a conjecture of Margenstern [8].

In analogy with Goldbach's conjecture and prime triplet conjecture, Melfi [10] proved that every positive even integer is the sum of two practical numbers, and that there are infinitely many triples $(n, n+2, n+4)$ of practical numbers. Moreover, Melfi [9] proved that every Lucas sequence $\left(U_{n}(P, Q)\right)$ satisfying some mild conditions contains infinitely many practical numbers, and Sanna [14] showed that $U_{n}(P, Q)$ is practical for at least $>_{P, Q} x / \log x$ positive integers $n \leq x$, as $x \rightarrow+\infty$; and asked for a nontrivial upper bound.

Leonetti and Sanna [7] studied binomial coefficients that are practical numbers. They proved that, for fixed $\varepsilon>0$ and as $x \rightarrow+\infty$, all binomial coefficients $\binom{n}{k}$, with $0 \leq k \leq n \leq x$, are practical numbers but at most $O_{\varepsilon}\left(x^{2-\left(2^{-1} \log 2-\varepsilon\right) / \log \log x}\right)$ exceptions. Furthermore, they showed that the central binomial coefficient $\binom{2 n}{n}$ is a practical number for all positive integers $n \leq x$ but at most $O\left(x^{0.88097}\right)$ exceptions. In this note, we give the following improvement of the last result.

Theorem 1.1. For $x \geq 3$ the central binomial coefficient $\binom{2 n}{n}$ is a practical number for all positive integers $n \leq x$ but at most $\exp \left(C(\log x)^{4 / 5} \log \log x\right)$ exceptions, where $C>0$ is a constant.

We remark that (as already pointed out in [7]), likely, there are only finitely many positive integers n such that $\binom{2 n}{n}$ is not a practical number, but proving so could be out of reach. In fact, if n is a power of 2 whose base 3 representation does not contain the digit 2 , then $\binom{2 n}{n}$ is not a practical number [7, Proposition 2.1]. However, establishing whether there are finitely or infinitely many such powers of 2 is an open problem $[2,4,6,11]$.

2. Preliminaries

We need some preliminary results.
Lemma 2.1. If d is a practical number and n is a positive integer divisible by d and having all prime factors not exceeding $2 d$, then n is a practical number.

[^0]Proof. See [7, Lemma 2.2].
For every positive integer n, let $s_{2}(n)$ be the number of nonzero binary digits of n.
Lemma 2.2. For every positive integer n, the exponent of 2 in the prime factorization of $\binom{2 n}{n}$ is equal to $s_{2}(n)$.
Proof. A result of Kummer [5] says that for every prime number p and for all positive integers m, n the exponent of p in the prime factorization of $\binom{m+n}{n}$ is equal to the number of carries in the addition $m+n$ done in base p. If $m=n$ and $p=2$ then we get the desired claim.
Lemma 2.3. We have

$$
\#\left\{n \leq x: s_{2}(n) \leq \varepsilon(\log n / \log 2+1)\right\} \leq x^{\left(\frac{1}{\log 2}+o(1)\right) \varepsilon \log (1 / \varepsilon)},
$$

uniformly as $\varepsilon \log x \rightarrow+\infty$ and $\varepsilon \rightarrow 0^{+}$.
Proof. Put $N:=\lfloor\log x / \log 2+1\rfloor$ and $k:=\lceil\varepsilon(\log n / \log 2+1)\rceil$. Then

$$
C:=\#\left\{n \leq x: s_{2}(n) \leq \varepsilon(\log n / \log 2+1)\right\} \leq \#\left\{n<2^{N}: s_{2}(n) \leq k\right\},
$$

where the right-hand side is the number of binary strings of length N having at most k nonzero bits (including $n=0$ to the count). Therefore,

$$
C \leq \sum_{j=0}^{k}\binom{N}{j} \leq \sum_{j=0}^{k} \frac{N^{j}}{j!}=\sum_{j=0}^{k} \frac{k^{j}}{j!}\left(\frac{N}{k}\right)^{j}<\left(\frac{e N}{k}\right)^{k}<e^{(1-\log \varepsilon)(\varepsilon(\log x / \log 2+1)+1)},
$$

and the claim follows recalling that $\varepsilon \log x \rightarrow+\infty$ and $\varepsilon \rightarrow 0^{+}$.
The following result of Erdős and Kolesnik is the key to the proof of Theorem 1.1.
Theorem 2.4. There exist constants $c_{1}, c_{2}>0$ such that, for all integers m, n, r with

$$
2 \leq m \leq n / 2 \quad \text { and } \quad 1 \leq r \leq c_{1}\left(\frac{(\log m)^{3}}{(\log n)^{2} \log \log n}\right)^{1 / 4}
$$

there exist at least $c_{2} r m^{1 / r} /\left(4^{r} \log m\right)$ prime numbers $p \in\left[m^{1 / r}, n^{1 / r}\right]$ such that $p^{r} \|\binom{ n}{m}$.
Proof. See [1, Theorem 2].
Corollary 2.1. There exists a constant $c_{3}>0$ such that, for all integers n, r with

$$
n \geq 3 \quad \text { and } \quad 1 \leq r \leq c_{3}\left(\frac{\log n}{\log \log n}\right)^{1 / 4}
$$

there exists a prime number $p \in\left[n^{1 / r},(2 n)^{1 / r}\right]$ such that $p^{r} \|\binom{ 2 n}{n}$.
Proof. The claim follows by replacing m and n with n and $2 n$, respectively, in Theorem 2.4.

3. Proof of Theorem 1.1

Fix $C>\max \left((5 \log 2)^{-1},\left(2 / c_{3}\right)^{4}\right)$, where c_{3} is the constant of Corollary 2.1. Assume that x is sufficiently large and put $E:=\exp \left(C(\log x)^{4 / 5} \log \log x\right)$ and $\varepsilon:=(\log x)^{-1 / 5}$. Let $n \leq x$ be a positive integer and let v be the exponent of 2 in the prime factorization of $\binom{2 n}{n}$. Since

$$
\frac{1}{\log 2} \varepsilon \log (1 / \varepsilon) \log x=\frac{1}{5 \log 2}(\log x)^{4 / 5} \log \log x<C(\log x)^{4 / 5} \log \log x
$$

from Lemma 2.2 and Lemma 2.3 we get that $2^{v} \leq n^{\varepsilon}$ for less than $\frac{1}{2} E$ choices of n. Hence, we can assume that $2^{v}>n^{\varepsilon}$ and $n>\frac{1}{2} E$, which excludes at most E positive integers not exceeding x. Then, since $n>\frac{1}{2} E$ and x is sufficiently large, we have

$$
\frac{\log n}{\log \log n}>\frac{\log \left(\frac{1}{2} E\right)}{\log \log \left(\frac{1}{2} E\right)}>C(\log x)^{4 / 5}>\left(\frac{2(\log x)^{1 / 5}}{c_{3}}\right)^{4} .
$$

Therefore,

$$
r:=\left\lfloor c_{3}\left(\frac{\log n}{\log \log n}\right)^{1 / 4}\right\rfloor>\frac{1}{\varepsilon} .
$$

Thanks to Corollary 2.1, there exists a prime number $p \in\left[n^{1 / r},(2 n)^{1 / r}\right]$ such that p^{r} divides $\binom{2 n}{n}$. Now 2^{v} is a practical number, because all powers of 2 are practical numbers. Morever, since

$$
p \leq(2 n)^{1 / r}<(2 n)^{\varepsilon}<2^{v+1}
$$

from Lemma 2.1 it follows that $2^{v} p^{r}$ is a practical number. Finally, $2^{v} p^{r}$ divides $\binom{2 n}{n}, 2^{v} p^{r} \geq 2 n$, and all prime factors of $\binom{2 n}{n}$ are not exceeding $2 n$, hence Lemma 2.1 yields that $\binom{2 n}{n}$ is a practical number. The proof is complete.

References

1. P. Erdős and G. Kolesnik, Prime power divisors of binomial coefficients, vol. 200, 1999, Paul Erdős memorial collection, pp. 101-117.
2. H. Gupta, Powers of 2 and sums of distinct powers of 3, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. (1978), no. 602-633, 151-158 (1979).
3. M. Hausman and H. N. Shapiro, On practical numbers, Comm. Pure Appl. Math. 37 (1984), no. 5, 705-713.
4. R. E. Kennedy and C. Cooper, A generalization of a result by Narkiewicz concerning large digits of powers, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 11 (2000), 36-40 (2001).
5. E. E. Kummer, Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, J. Reine Angew. Math. 44 (1852), 93-146.
6. J. C. Lagarias, Ternary expansions of powers of 2, J. Lond. Math. Soc. (2) 79 (2009), no. 3, 562-588.
7. P. Leonetti and C. Sanna, Practical numbers among the binomial coefficients, J. Number Theory 207 (2020), 145-155.
8. M. Margenstern, Les nombres pratiques: théorie, observations et conjectures, J. Number Theory 37 (1991), no. 1, 1-36.
9. G. Melfi, A survey on practical numbers, Rend. Sem. Mat. Univ. Politec. Torino 53 (1995), no. 4, 347-359, Number theory, II (Rome, 1995).
10. G. Melfi, On two conjectures about practical numbers, J. Number Theory 56 (1996), no. 1, 205-210.
11. W. Narkiewicz, A note on a paper of H. Gupta concerning powers of two and three: "Powers of 2 and sums of distinct powers of 3" [Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 602-633 (1978), 151-158 (1979); MR 81g:10016], Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. (1980), no. 678-715, 173-174 (1981).
12. L. Pisano, Fibonacci's Liber Abaci, Sources and Studies in the History of Mathematics and Physical Sciences, Springer-Verlag, New York, 2002, A translation into modern English of Leonardo Pisano's Book of calculation, Translated from the Latin and with an introduction, notes and bibliography by L. E. Sigler.
13. E. Saias, Entiers à diviseurs denses. I, J. Number Theory 62 (1997), no. 1, 163-191.
14. C. Sanna, Practical numbers in Lucas sequences, Quaest. Math. 42 (2019), no. 7, 977-983.
15. A. K. Srinivasan, Practical numbers, Current Sci. 17 (1948), 179-180.
16. G. Tenenbaum, Sur un problème de crible et ses applications, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 1, 1-30.
17. A. Weingartner, Practical numbers and the distribution of divisors, Q. J. Math. 66 (2015), no. 2, 743-758.
18. A. Weingartner, The constant factor in the asymptotic for practical numbers, Int. J. Number Theory 16 (2020), no. 3, 629-638.

Politecnico di Torino, Department of Mathematical Sciences
Corso Duca degli Abruzzi 24, 10129 Torino, Italy
Email address: carlo.sanna.dev@gmail.com

[^0]: 2010 Mathematics Subject Classification. Primary: 11B65, Secondary: 11N25.
 Key words and phrases. central binomial coefficient; practical number.
 \dagger C. Sanna is a member of the INdAM group GNSAGA.

